
Fast Predictive Repair in Erasure-Coded Storage
Zhirong Shen, Xiaolu Li, and Patrick P. C. Lee

Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract—Erasure coding offers a storage-efficient redundancy
mechanism for maintaining data availability guarantees in large-
scale storage clusters, yet it also incurs high performance
overhead in failure repair. Recent developments in accurate disk
failure prediction allow soon-to-fail (STF) nodes to be repaired
in advance, thereby opening new opportunities for accelerating
failure repair in erasure-coded storage. To this end, we present
a fast predictive repair solution called FastPR, which carefully
couples two repair methods, namely migration (i.e., relocating
the chunks of an STF node) and reconstruction (i.e., decoding
the chunks of an STF node through erasure coding), so as to fully
parallelize the repair operation across the storage cluster. FastPR
solves a bipartite maximum matching problem and schedules
both migration and reconstruction in a parallel fashion. We
show that FastPR significantly reduces the repair time over the
baseline repair approaches via mathematical analysis, large-scale
simulation, and Amazon EC2 experiments.

I. INTRODUCTION

Failures are prevalent in large-scale storage clusters and
manifest at disks or various storage components [10], [15], [30],
[36]. Field studies report that disk replacements in production
are more frequent than estimated by vendors [30], [36], and
latent sector errors are commonly found in modern disks [4].

To maintain data availability guarantees in the face of failures,
practical storage clusters often stripe data with redundancy
across multiple nodes via either replication or erasure coding.
Replication creates identical data copies and is adopted by
earlier generations of storage clusters, yet it incurs substantial
storage overhead, especially with today’s tremendous growth
of data storage. On the other hand, erasure coding creates a
limited amount of redundant data through coding computations,
and provably maintains the same level of fault tolerance with
much less storage redundancy than replication [41]. Today’s
large-scale storage clusters increasingly adopt erasure coding
to provide low-cost fault-tolerant storage (e.g., [2], [10], [13],
[26], [28]), and reportedly save petabytes of storage compared
to replication [13], [26].

While being storage-efficient, erasure coding incurs high
repair penalty. As an example, we consider Reed-Solomon (RS)
codes [34], which are a popular erasure coding construction
used in production [2], [10], [26], [28]. At a high level, RS
codes encode k data chunks into n coded chunks for some
parameters k and n > k, such that any k out of n coded
chunks can reconstruct (or decode) all original k data chunks.
However, repairing a lost chunk of RS codes needs to retrieve
k available chunks for decoding, implying that both bandwidth
and I/O costs for a single-chunk repair are amplified k times;
in contrast, in replication, repairing a lost chunk can be simply
done by retrieving another available chunk copy.

The high repair penalty is a fundamental issue in all erasure
coding constructions: the repair traffic increases as the storage
redundancy decreases [8]. Thus, there have been extensive
studies on improving the repair performance of erasure coding,
such as proposing theoretically proven erasure codes that
minimize the repair traffic or I/Os during repair (e.g., [8],
[13], [35]), or designing repair-efficient techniques that apply
to all practical erasure codes including RS codes (e.g., [5],
[20], [21], [24], [37], [38]). Conventional repair approaches
are reactive, meaning that a repair operation is triggered only
after a node failure is detected. Nevertheless, if we can predict
impending failures in advance, we may proactively repair the
lost data of any impending failed node to mitigate the repair
penalty before any actual failure occurs.

Recent studies show that machine learning can achieve
accurate prediction of disk failures in production environments
with thousands of disks [6], [18], [23], [42], [43], [45]; in some
cases, the prediction accuracy can even reach at least 95% [6],
[18], [23], [45] with a very small false alarm rate. Motivated by
the potential of highly accurate disk failure prediction, we can
accurately pinpoint a soon-to-fail (STF) node and accelerate a
repair operation by coupling two repair methods: (i) migration,
in which we relocate the currently stored chunks of the STF
node to other healthy nodes, and (ii) reconstruction, in which
we reconstruct (or decode) the chunks of the STF node by
retrieving the chunks of all healthy nodes in a storage cluster as
in conventional reactive repair approaches. Migration addresses
the bandwidth and I/O amplification issues that are inherent
in erasure coding, while reconstruction exploits the aggregate
bandwidth resources of all healthy nodes. An open question is
how to carefully couple both migration and reconstruction so
as to maximize the repair performance.

We present FastPR, a Fast Predictive Repair approach that
carefully couples the migration and reconstruction of the chunks
of the STF node, with the primary objective of minimizing
the total repair time. FastPR schedules both migration and
reconstruction of the chunks of the STF node in a parallel
fashion, so as to exploit the available bandwidth resources of
the underlying storage cluster. We address two repair scenarios:
scattered repair, which stores the repaired chunks of the STF
node across all other existing nodes in the storage cluster,
and hot-standby repair, which stores the repaired chunks of
the STF node in dedicated hot-standby nodes. We present an
in-depth study of FastPR through mathematical analysis, large-
scale simulation, and Amazon EC2 experiments, and make the
following contributions:
• We first present mathematical analysis on the optimal

predictive repair in minimizing the total repair time. We show

that it can reduce the repair time by over 30% compared to
the conventional reactive repair.

• We present FastPR, which is designed to parallelize both
migration and reconstruction across the storage cluster. We
formulate a bipartite maximum matching problem and design
polynomial repair algorithms to schedule both migration and
reconstruction to be effectively executed in a parallel fashion.

• We implement a FastPR prototype in C++ and show that it
can be seamlessly integrated with HDFS of Hadoop 3.1.1
[3] without changing the HDFS codebase.

• We conduct large-scale simulation based on our modified
FastPR prototype. FastPR significantly reduces the repair
times of both migration-only and reconstruction-only ap-
proaches (the latter is equivalent to the conventional reactive
repair), for example, by 62.7% and 40.6%, respectively for
(n, k) = (16, 12) in scattered repair. Also, FastPR is close
to the optimal point (different by no more than 11.4%) that
is derived from our mathematical analysis.

• We deploy FastPR on HDFS and conduct testbed ex-
periments on Amazon EC2 with 25 instances, so as to
demonstrate the effectiveness of FastPR in real-world envi-
ronments. FastPR still significantly reduces the repair times
of both migration-only and reconstruction-only approaches,
for example, by up to 42.6% and 71.7%, respectively for
different parameters of (n, k) in scattered repair.
The source code of FastPR is available for download at:

http://adslab.cse.cuhk.edu.hk/software/fastpr.

II. BACKGROUND AND PROBLEM

A. Erasure Coding

We consider a storage cluster that stores file data over a
network of nodes (which may refer to disks or servers). Files
are stored as a collection of fixed-size chunks that are striped
across different nodes. The chunk size is typically on the
order of MBs (e.g., 64 MB or larger) to mitigate the disk I/O
overhead. We encode the chunks with erasure coding to achieve
low-redundancy fault tolerance.

In this paper, we focus on RS codes [34], which are a
well-known erasure code construction and have been widely
deployed in production [2], [10], [26], [28]. We can construct
an RS code, denoted by RS(n, k), with two parameters n and
k, where k < n. RS(n, k) encodes k uncoded chunks into n
coded chunks of the same size via linear combinations based on
Galois Field arithmetic, such that any k out of n coded chunks
can reconstruct (or decode) the original k uncoded chunks;
in other words, it can tolerate the loss of any n − k coded
chunks. Each collection of n coded chunks is called a stripe
and is distributed across n distinct nodes, so as to tolerate any
n−k node failures. In practice, a storage cluster stores multiple
stripes that are independently encoded and distributed across
different sets of n distinct nodes. Note that we can construct
RS codes in systematic form, meaning that k of the n coded
chunks of a stripe are exactly the k original uncoded chunks
that can be directly accessed in normal mode. Nevertheless,
in this paper, we do not differentiate whether the chunks of a

stripe are in uncoded or coded form; instead, we collectively
refer to them as “chunks” in the following discussion.

RS codes are popular mainly for two reasons. First, RS
codes are storage-optimal (a.k.a. Maximum Distance Separable
(MDS) in coding theory), meaning that RS(n, k) achieves the
minimum amount of redundancy (i.e., n/k times the original
data) while allowing any k chunks of a stripe to reconstruct
the original data. Second, RS codes are general, as they can
support any general parameters n and k (provided that k < n).
However, RS codes incur substantial repair traffic (i.e., the
amount of available data being retrieved for repairing the lost
data). Specifically, during a single node failure, repairing any
lost chunk under RS(n, k) needs to first retrieve k chunks of
the same stripe from k surviving nodes for decoding, implying
that the amount of repair traffic is k times that of lost data.

Many repair-efficient erasure codes have been proposed to
reduce the repair bandwidth over RS codes, while preserving
the same or slightly higher redundancy. For example, Minimum-
Storage Regenerating (MSR) codes [8] are storage-optimal as
RS codes, and minimize the repair traffic for repairing a single
lost chunk by allowing surviving nodes to send the linear
combinations of the locally stored data during repair. Recently
proposed MSR codes (e.g., PM-RBT [32], Butterfly [29], and
Clay [40]) further eliminate the need of computing linear
combinations by reading directly the required sub-chunks from
surviving nodes during repair. Locally repairable codes (LRCs)
[13], [35] trade slightly higher redundancy for improved repair
performance by storing an extra local coded chunk associated
with a subset of chunks (i.e., a local group) of a stripe, so that
repairing a single lost chunk can be done by retrieving the
available chunks within the same local group. Note that the
amount of repair traffic, even though being minimized, remains
larger than the amount of lost data [8], so the bandwidth and
I/O amplification issues still exist during repair.

While we focus on RS codes, our methodologies also apply
to repair-efficient codes, which retrieve available data from k′

healthy nodes (e.g., k < k′ ≤ n− 1 in MSR codes, or k′ < k
in LRCs) when repairing a lost chunk, such that the amount of
repair traffic is less than the total size of k chunks. We provide
an example for LRCs in Section III.

B. Predictive Repair

Existing erasure codes (including RS codes and other repair-
efficient codes) take a reactive repair approach and trigger repair
operations upon detecting a lost chunk (or a node failure). In
this work, we explore a proactive approach, namely predictive
repair, to predict a soon-to-fail (STF) node and restore its
currently stored chunks to other healthy (i.e., non-STF) nodes
in advance before it actually fails or is replaced.
Motivation: Modern disk vendors adopt SMART (Self-
Monitoring, Analysis and Reporting Technology) to collect
statistics on different disk reliability aspects. Each disk includes
a SMART tool in its microprocessor firmware to monitor disk
operations and report a number of SMART attributes (e.g.,
error counts, disk temperature, power-on hours, etc.). If the
SMART attributes of interest are above some thresholds, the

http://adslab.cse.cuhk.edu.hk/software/fastpr

disk firmware triggers failure warnings [14]. For example,
RAIDShield [22] replaces a potentially failed disk whose
reallocated sector count from SMART is above a threshold,
and such protection is reportedly deployed in production. Note
that SMART attributes are arguably inaccurate indicators of
failed disks [11], [30] (e.g., over half of the failed disks do
not show SMART errors [30]). Nevertheless, machine learning
has recently been shown to effectively predict disk failures in
production environments based on SMART data [6], [18], [23],
[42], [45] and additional system events [43]. In addition to
disk failures, machine learning is proven effective to predict
the failures of other types of components (e.g., machines or
switches) in data center environments [17], [44].

Repair methods: We design the predictive repair mechanism
by coupling two methods, namely migration and reconstruction,
to repair the chunks of an STF node. We discuss the pros and
cons of both methods.

Migration reads the stored chunks directly from an STF
node and relocates them to one or multiple healthy nodes. It
does not introduce extra traffic compared to normal reads, and
hence has no bandwidth and I/O amplification issues. However,
the performance is bottlenecked by the available bandwidth of
the STF node.

On the other hand, reconstruction follows the conventional
reactive repair, by retrieving multiple chunks (e.g., k chunks in
RS(n, k)) from healthy nodes to reconstruct the chunks of the
STF node. Since multiple stripes are typically spread across
the storage cluster, we can exploit the available bandwidth
resources of the storage cluster and involve all healthy nodes
to participate in the repair of multiple chunks of the STF
node in a parallel fashion. However, the drawback is that it
introduces extra traffic.

Goal and assumptions: Our idea is to take advantage of both
migration and reconstruction to maximize the predictive repair
performance, with the primary objective of minimizing the
repair time of repairing a single STF node. Minimizing the
repair time is critical for reducing the window of vulnerability,
especially when failures are correlated and subsequent failures
appear sooner after the first failure [36].

Our work makes the following assumptions. First, we assume
that there is at most one STF node at a time in the storage
cluster, based on the observation that single-node repair is
the most dominant repair event (e.g., 98% of the total [33])
as opposed to multi-node repair [13], [33]. Nevertheless, if
multiple failed nodes occur within a stripe, we can resort to
the conventional reactive repair. Second, to mitigate the risk
of data loss, we assume that proactively repairing the chunks
of the STF node is necessary, even though the STF node
is a false alarm and is later deemed healthy after extensive
operational tests [36]. Third, we assume that the chunks stored
in the STF node remain accessible during repair until the STF
node actually fails or is shut down for replacement. Finally,
the chunk distribution may become imbalanced after multiple
repairs, and we assume that the storage cluster periodically
rebalances the chunk distribution in the background.

STF Node

Reconstruction

Migration

Reconstruction

Healthy Nodes

(a) Scattered repair

Hot-Standby Nodes

STF Node

Reconstruction

Migration

Healthy Nodes

(b) Hot-standby repair

Fig. 1. Repair scenarios: (a) scattered repair and (b) hot-standby repair. Chunks
of the same color belong to the same stripe. Different stripes are spread across
the storage cluster.

C. Repair Scenarios

We study how we apply predictive repair in two scenarios,
namely scattered repair and hot-standby repair, which specify
different destination nodes for storing repaired chunks of an
STF node. Figure 1 illustrates both scenarios.

Scattered repair selects existing healthy nodes in the storage
cluster to repair and store the repaired chunks of the STF node.
Specifically, to repair a chunk of each stripe, scattered repair
should choose the healthy node that currently does not store
any chunk of the same stripe, so that we maintain the same
degree of (node-level) fault tolerance. Thus, the performance of
scattered repair depends on the cluster scale and the distribution
of the stripes across the cluster.

On the other hand, hot-standby repair deploys one or multiple
dedicated nodes (called hot-standby nodes) to repair and store
the repaired chunks of the STF node. Before repair, such hot-
standby nodes serve as backup nodes without participating in
normal applications, but take over the service of the STF node
after repair. The performance of hot-standby repair depends
on the number of hot-standby nodes available for repair.

III. MATHEMATICAL ANALYSIS

We conduct simple mathematical analysis to provide pre-
liminary insights into the performance gain of the optimal
predictive repair over the conventional reactive repair in a
large-scale storage cluster.
General formulation: We first provide a general formulation
that addresses the performance of both reactive and predictive
repair strategies in both scattered and hot-standby repair sce-
narios, and later extend the formulation for different scenarios.
Let M be the total number of nodes in a storage cluster and
U be the total amount of chunks of the STF node that are
repaired. Let x be the amount of chunks being repaired by
migration; hence, U−x is the amount of chunks being repaired
by reconstruction.

For migration, let tm be the time to migrate a chunk from
the STF node to another healthy node. Thus, the total time
spent in migration is x · tm.

For reconstruction, let tr be the time to repair a chunk of
the STF node. Recall that we reconstruct each chunk of the
STF node by retrieving k chunks from k healthy nodes under
RS(n, k). If M − 1 (i.e., the number of healthy nodes in the
storage cluster) is significantly larger than k, then we can
reconstruct multiple chunks of the STF node simultaneously.
Suppose that we divide the reconstruction process into multiple
rounds, such that in each round, we can find G ≤ M−1

k non-
overlapping groups of k nodes that belong to different stripes
and retrieve the chunks from them in parallel (i.e., k chunks
from each group). Thus, we can repair G chunks of the STF
node in time tr through reconstruction, and the total time spent
in reconstruction is U−x

G · tr.
Let T (x) be the total repair time of predictive repair. As

both migration and reconstruction are performed in parallel,
we have:

T (x) = max(x · tm,
U − x

G
· tr). (1)

We can readily show that T (x) is minimized when x · tm =
U−x
G · tr, or equivalently, x = U ·tr

G·tm+tr
. Thus, the minimum

predictive repair time (denoted by TP) is:

TP =
U · tr · tm
G · tm + tr

. (2)

On the other hand, as the reactive repair simply follows
reconstruction without migration, the total repair time of
reactive repair (denoted by TR) is T (0) from Equation (1), i.e.,

TR =
U · tr
G

. (3)

Modeling of repair scenarios: We now extend our general
formulation to address both scattered and hot-standby repair
scenarios. Our goal is to model the values of tm and tr.

In our modeling, we decompose a repair operation into three
steps carried out in a sequential manner: (i) read (i.e., reading
chunks from the underlying local storage), (ii) transmission
(i.e., transmitting the chunks over the network), and (iii) write
(i.e., writing the repaired chunks into new existing nodes
(for scattered repair) or hot-standby nodes (for hot-standby
repair)). Let bd and bn be the disk and network bandwidths,
respectively, and c be the chunk size. We calculate the read
time, transmission time, and write time for each repaired chunk.

To simplify our analysis, we do not address disk I/O
interference, which occurs in the following cases: (i) in
scattered repair, an existing healthy node reads a locally stored
chunk while writing the repaired chunk for another stripe, and
(ii) in hot-standby repair, a hot-standby node writes the chunks
from both migration and reconstruction. We also assume that
the computational costs of coding operations are negligible
compared to disk I/Os and network transmission [16].

We first model tm in migration, which applies to both
scattered and hot-standby repairs. The read time, transmission

time, and write time for each repaired chunk are c/bd, c/bn,
and c/bd, respectively. Thus,

tm =
c

bd
+

c

bn
+

c

bd
. (4)

We now model tr in reconstruction. For the scattered repair,
each of the k healthy nodes can read the chunks of a stripe
in parallel, so the read time for each repaired chunk is c/bd.
Each repaired chunk triggers k chunks transmitted over the
network, so the transmission time for each repaired chunk is
k · c/bn. The write time for each repair chunk is c/bd. Thus,

tr =
c

bd
+

k · c
bn

+
c

bd
(for scattered repair). (5)

For the hot-standby repair, let h be the number of hot-standby
nodes, such that h� G; hence, the transmissions and writes to
the hot-standby nodes are the bottlenecks. Recall that in each
round, we can repair G chunks of the STF node in parallel,
and they trigger a total of G · k chunks transmitted over the
network. Thus, each hot-standby node on average receives G·k

h
chunks from the network and writes G

h repaired chunks. Thus,

tr =
c

bd
+

G · k · c
h · bn

+
G · c
h · bd

(for hot-standby repair). (6)

Analysis: We study via mathematical analysis the performance
gain of the optimal predictive repair (Equation (2)) over the
conventional reactive repair (Equation (3)). In our analysis,
we assume that we can find the maximum of G = M−1

k non-
overlapping groups of chunks to repair M−1

k chunks of the
STF node at time tr in parallel.

We consider the following default configurations. We set
M = 100, U = 1,000 chunks of size c = 64 MB each,
bd = 100 MB/s, and bn = 1 Gb/s. We consider RS(9, 6), the
default erasure coding configuration in QFS [28]. For hot-
standby repair, we set h = 3. We vary one of the parameters
and analyze its performance impact. Here, we measure the
repair time per chunk.

Figure 2 first shows the repair time in scattered repair.
Predictive repair shows a higher performance gain than reactive
repair when the number of nodes is small (Figure 2(a)), k is
large (Figure 2(b)), bd is large (Figure 2(c)), and bn is small
(Figure 2(d)). The reason is that the repair penalty due to
the amplified repair traffic in reactive repair becomes more
significant in such cases. Overall, predictive repair reduces
the repair time of reactive repair in all cases, for example, by
33.1% in RS(16, 12) (Figure 2(b)).

Figure 3 shows the repair time in hot-standby repair. When
the number of hot-standby nodes h is small, predictive repair
is more significant (Figure 3(b)). For example, when h = 3,
predictive repair reduces the repair time by 41.3%.

Extension for LRCs: We elaborate how we can generalize the
above analysis for LRCs [13], [35], which divide k chunks into
l local groups (assuming that k is divisible by l) and associate
each local group with a local coded chunk (Section II-A).
Repairing a single lost chunk is done by retrieving k′ = k

l
chunks within the local group. Thus, we can retrieve the chunks

0.0

0.5

1.0

1.5

20 30 40 50 60 70 80 90 100
of nodes

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

0.0

0.5

1.0

1.5

RS(9,6) RS(14,10) RS(16,12)
Erasure Codes

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

(a) Varying M (b) Varying RS(n, k)

0.0

0.1

0.2

0.3

0.4

100 200 300 400 500
Disk Bandwidth (MB/s)

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

0.0

0.2

0.4

0.6

0.5 1 2 5 10
Network Bandwidth (Gb/s)

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

(c) Varying bd (d) Varying bn

Fig. 2. Mathematical analysis in scattered repair.

0.0

0.5

1.0

1.5

2.0

2.5

20 30 40 50 60 70 80 90 100
of nodes

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

0.0

0.5

1.0

1.5

2.0

2.5

3 4 5 6 7 8 9
of Hot-Standby Nodes

R
ep

ai
r

T
im

e
(S

ec
)

predictive repair
reactive repair

(a) Varying M (b) Varying h

Fig. 3. Mathematical analysis in hot-standby repair.

from G′ ≤ M−1
k′ non-overlapping groups in each round of

reconstruction. By substituting G with G′ in Equation (2) and
k with k′ in Equations (5) and (6), our analysis follows.

IV. FAST PREDICTIVE REPAIR

We now present the design of FastPR, which couples both
migration and reconstruction to achieve fast predictive repair.
FastPR aims to identify, with polynomial complexity, a repair
solution that minimizes the repair time (Section III).

The main idea of FastPR is to decompose a repair operation
of an STF node into multiple repair rounds that are iteratively
executed. Each repair round comprises the sets of chunks of
an STF node that are to be repaired through either migration
or reconstruction. FastPR examines the chunk distribution
and identifies the appropriate sets of chunks for migration or
reconstruction in each repair round, such that it minimizes the
total number of repair rounds and hence the repair time.

A. Design Overview

We first provide an overview of how FastPR performs both
migration and reconstruction in a repair round. Figure 4 depicts
the idea under RS(5, 3) (i.e., n = 5 and k = 3). Let Ni be
the i-th healthy node, and Si be the stripe for the i-th chunk
of the STF node to be repaired. Suppose that we are given
the sets of cm and cr chunks of an STF node for migration
and reconstruction in a repair round, respectively. For example,
the storage cluster (with M = 7 nodes) in Figure 4(a) has
M − 1 = 6 healthy nodes N1, · · · , N6, while the chunks of
the STF node correspond to stripes S1, S2, and S3. Also, we
have cm = 1 and cr = 2. We address the following two issues.

STF Node N4

Migration

Reconstruction

N3N2N1 N5 N6

Stripes

S1

S2

S3

STF Node

S1

S2

S3

Stripes

N4N3N2N1 N5 N6

Migration

Reconstruction

(a) Distribution of three stripes under RS(5, 3)

S2

S1

N1

N2
N3
N4

N5
N6

S2

S1

N1

N2
N3
N4
N5
N6

N1

N2
N3
N4

N5
N6

S2

S3

S1

S2

S3

S1

N1

N2
N3
N4

N5
N6

(b) Identifying the chunks to be retrieved

S2

S1

N1

N2
N3
N4

N5
N6

S2

S1

N1

N2
N3
N4
N5
N6

N1

N2
N3
N4

N5
N6

S2

S3

S1

S2

S3

S1

N1

N2
N3
N4

N5
N6

(c) Identifying how to store repaired chunks in scattered repairSTF Node N4

Migration

Reconstruction

N3N2N1 N5 N6

Stripes

S1

S2

S3

STF Node

S1

S2

S3

Stripes

N4N3N2N1 N5 N6

Migration

Reconstruction

(d) Performing scattered repair

Fig. 4. Overview of how FastPR performs both migration and reconstruction
in a repair round. Chunks of the same color belong to the same stripe.

First, given the cr chunks of the STF node to be repaired
through reconstruction, FastPR needs to identify the k · cr
chunks to be retrieved from k · cr healthy nodes. We formulate
the selection of the k · cr chunks as a bipartite maximum
matching problem (Figure 4(b)). Specifically, we construct a
bipartite graph with the left and right sets of vertices, in which
the left set contains M−1 node vertices representing all M−1
healthy nodes, and the right set contains k · cr chunk vertices
representing the k · cr chunks to be retrieved from cr stripes
(i.e., k chunks per stripe). We add an edge from a node vertex
to a chunk vertex if the corresponding node stores a chunk for
the corresponding stripe. For example, in Figure 4(b), the node
vertices for {N1, N2, N3, N4} and {N3, N4, N5, N6} are
connected to the k = 3 chunk vertices for stripes S1 and S2,
respectively (i.e., each chunk vertex is connected to n−1 node
vertices). Our goal is to find a maximum matching with k · cr
edges, implying that all k · cr chunk vertices are included in
the maximum matching. For example, the maximum matching
in Figure 4(b) states that we can retrieve chunks from N1, N2,
and N3 to reconstruct the chunk for S1. Such a maximum
matching can be solved, say, as a maximum flow problem by
Ford-Fulkerson algorithm in O(V E) time, where V and E are
the numbers of vertices and edges, respectively [7].

Second, FastPR needs to identify how to store the cm + cr

repaired chunks. For scattered repair, we store the repaired
chunks in cm + cr existing healthy nodes, such that the node-
level fault tolerance is maintained (i.e., any n−k node failures
are tolerable). We again formulate the selection of the cm + cr
existing nodes as a bipartite maximum matching problem.
Specifically, we construct a bipartite graph with the left and
right sets of vertices, in which the left set contains M − 1
node vertices representing all M − 1 healthy nodes, and the
right set contains cm + cr stripe vertices representing the
cm + cr stripes being repaired. We add an edge from a node
vertex to a stripe vertex if the node does not store a chunk
for the stripe before the repair operation. For example, in
Figure 4(c), the node vertices for {N5, N6}, {N1, N2}, and
{N1, N3} are connected to the stripe vertices for stripes S1,
S2, and S3, respectively. Thus, each stripe vertex is connected
to M − 1− (n− 1) = M −n node vertices (recall that M − 1
is the number of healthy nodes in the storage cluster, and
n− 1 is the number of healthy nodes that store the chunks of
the corresponding stripe). If M is sufficiently large such that
M − n ≥ cm + cr, then any subset of cm + cr stripe vertices
are connected to at least M − n ≥ cm + cr node vertices. By
Hall’s Theorem [7], we can always find a maximum matching
that includes all cm + cr stripe vertices. Such a maximum
matching determines the node where each repaired chunk is
stored. For example, the maximum matching in Figure 4(c)
shows that we can store the repaired chunk of S1 in N5. For
hot-standby repair, we simply evenly distribute the repaired
chunks to all h hot-standby nodes.

Given the sets of chunks for migration and reconstruction
in a repair round, FastPR performs both migration and
reconstruction in parallel (see Figure 4(d) for scattered repair).
In the following, we show how we identify the chunks for
migration and reconstruction in each repair round.

B. Finding Reconstruction Sets

Design idea: To minimize the total number of repair rounds,
FastPR aims to maximize the number of chunks of the
STF node to be repaired in each repair round. Suppose that
all chunks in the STF node are to be repaired through the
reconstruction method. We partition all chunks of the STF
node into reconstruction sets. Each chunk in a reconstruction
set can be repaired through reconstruction by retrieving k
chunks from k healthy nodes, such that at most one chunk is
retrieved from each of the M − 1 healthy nodes. Intuitively, a
reconstruction set contains the chunks of the STF node that
can be reconstructed in parallel in a single repair round. To
improve parallelism, a reconstruction set should contain as
many chunks of the STF node as possible (at most M−1

k as
shown in Section III), or equivalently, FastPR should return
as few reconstruction sets as possible that cover all the chunks
of the STF node to be repaired.

To find reconstruction sets, we build on the bipartite
maximum matching problem in Section IV-A to check if a
subset of chunks of the STF node can be reconstructed in
parallel. Based on the reconstruction sets, we then schedule the

STF Node

C1

C2

C3

C4

C1:

C2:

STF Node

C1

C2

C3

C4

C1:

C3:

C4:

N4N3N2N1 N5 N6 N7 N8 N9

N4N3N2N1 N5 N6 N7 N8 N9

(a) An initial reconstruction set
STF Node

C1

C2

C3

C4

C1:

C2:

STF Node

C1

C2

C3

C4

C1:

C3:

C4:

N4N3N2N1 N5 N6 N7 N8 N9

N4N3N2N1 N5 N6 N7 N8 N9

(b) An optimized reconstruction set
Fig. 5. Finding reconstruction sets: (a) an initial reconstruction set that can
only reconstruct two chunks in parallel; (b) an optimized reconstruction set
that can reconstruct three chunks in parallel. Chunks with dashed boxes are
those retrieved from healthy nodes for reconstruction.

chunks to be repaired through either migration or reconstruction
(Section IV-C).
Algorithm details: Algorithm 1 presents how finding recon-
struction sets works. Let C denote the set of all chunks of the
STF node to be repaired, and R denote a reconstruction set.

Algorithm 1 finds a reconstruction set R through the FIND
function (Lines 9-40). First, we form an initial reconstruction
set R (Lines 10-17), by incrementally adding a chunk in C
to R and checking if the new set of chunks in R can be
reconstructed in parallel. Specifically, for each chunk Ci ∈ C,
we call the MATCH function (Lines 1-8) to form a bipartite
graph that contains M−1 node vertices representing the healthy
nodes and k(1 + |R|) chunk vertices representing the chunks
for R∪ {Ci} (Line 2). Then we find the maximum matching
on the bipartite graph (Line 3). If the maximum matching has
k(1 + |R|) edges, it implies that the chunks in R∪ {Ci} can
be reconstructed through the chunks at k(1 + |R|) different
healthy nodes in parallel. In this case, the MATCH function
returns true (Lines 4-6). We add Ci to R and also remove Ci

from C (Lines 14-15).
Given the initial reconstruction set R, we check if we can

expand R by swapping one of its chunks with another chunk
that is currently not in R (Lines 18-38). Specifically, for each
Ci ∈ R and Cj ∈ C (note that C now contains the residual
chunks that are to be repaired), we swap them to form a new
reconstruction set R′. We check if adding any chunk Cl ∈ C
to R′ can expand the maximum matching; if so, we include
Cl into some dummy set Ai,j (Lines 20-31). Finally, we find
the pair (i∗, j∗) such that |Ai∗,j∗ | is maximum (Line 32), so
as to add the most chunks into R. If |Ai∗,j∗ | > 0, we swap
Ci∗ ∈ R and Cj∗ ∈ C, add Ai∗,j∗ to R, and remove Ai∗,j∗

from C (Lines 33-35); otherwise, we cannot further expand R,
so we break the while-loop (Line 36).

Finally, in the main procedure (Lines 41-48), we repeatedly
call the FIND function on C, until all chunks in C are
organized into reconstruction sets. We return the collection of
all reconstruction sets {R1,R2, · · · ,Rd}, where d is the total
number of reconstruction sets.
Example: Figure 5 shows an example of finding all reconstruc-

Algorithm 1 Finding Reconstruction Sets
1: function MATCH(R, Ci)
2: Form a bipartite graph based on M − 1 nodes and R∪{Ci}
3: Find a maximum matching on the bipartite graph
4: if the maximum matching has k(1 + |R|) edges then
5: return true
6: end if
7: return false
8: end function
9: function FIND(C)

10: // Form an initial reconstruction set
11: Initialize R = ∅
12: for each chunk Ci ∈ C do
13: if MATCH(R, Ci) equals true then
14: Set R = R∪ {Ci}
15: Set C = C − {Ci}
16: end if
17: end for
18: // Optimize the reconstruction set
19: while true do
20: for each chunk Ci ∈ R do
21: for each chunk Cj ∈ C do
22: Initialize Ai,j = ∅
23: Set R′ = R∪ {Cj} − {Ci}
24: for each chunk Cl ∈ C do
25: if MATCH(R′, Cl) equals true then
26: Set Ai,j = Ai,j ∪ {Cl}
27: Set R′ = R′ ∪ {Cl}
28: end if
29: end for
30: end for
31: end for
32: Set (i∗, j∗) = argmax(i,j){|Ai,j |}
33: if |Ai∗,j∗ | > 0 then
34: Set R = R∪Ai∗,j∗ ∪ {Cj∗} − {Ci∗}
35: Set C = C ∪ {Ci∗} − {Cj∗} − Ai∗,j∗

36: else break
37: end if
38: end while
39: return (R, C)
40: end function
41: procedure MAIN(C)
42: Initialize d = 0
43: while C 6= φ do
44: Set d = d+ 1
45: (Rd, C) = FIND(C)
46: end while
47: return {R1, · · · ,Rd}
48: end procedure

tion sets, in which there are four stripes encoded by RS(5, 3)
that are stored in 10 nodes. Suppose that the STF node stores
four chunks C = {C1, C2, C3, C4}. Based on Algorithm 1,
we obtain an initial reconstruction set R = {C1, C2}, and
we can verify that adding C3 or C4 to R cannot expand the
maximum matching (Figure 5(a)). We further optimize R by
checking if it can include more chunks in C. By replacing
C2 in R with C3 in C, we see that C4 can now be added to
the reconstruction set, so the new reconstruction set becomes
R = {C1, C3, C4} (Figure 5(b)). The remaining C2 forms
another reconstruction set. Thus, we have two reconstruction
sets {R1,R2} = {{C1, C3, C4}, {C2}}.

C. Repair Scheduling

Design idea: Given the reconstruction sets, we schedule how
the chunks of the STF node are actually repaired through
migration or reconstruction in a repair round. Our observation
is that the chunks in a larger reconstruction set are more
preferred to be repaired through reconstruction, since more
chunks can be repaired in parallel. In contrast, the chunks in
a smaller reconstruction set are more preferred to be repaired
through migration to reduce the repair traffic.

We need to first decide how many chunks are migrated or
reconstructed (i.e., cm and cr, respectively) in each repair round.
Here, we set cr as the number of chunks in a reconstruction set
being selected to be reconstructed, and estimate cm based on
the disk bandwidth bd and network bandwidth bn. Specifically,
tm and tr denote the times to repair a chunk through migration
and reconstruction in a repair round, respectively (Section III).
For tm, we can derive it via Equation (4). For tr, we derive
it via Equations (5) and (6) for scattered and hot-standby
repairs, respectively; note that G = cr here. Since tr is also
the reconstruction time in a repair round, we can calculate
cm = tr

tm
, meaning that migrating cm chunks spends the same

amount of time as reconstructing cr chunks in a repair round.

Algorithm details: Algorithm 2 presents how repair scheduling
works, given the input of reconstruction sets. First, we sort all d
reconstruction sets {R1, · · · ,Rd} by their numbers of chunks
in monotonically descending order (Line 1). We initialize two
indices l = 1 and u = d to refer to the currently considered
reconstruction sets that have the most and the fewest chunks
(Line 2). First, we compute cm from cr = |Rl| (Line 4). If
|Rl+1 ∪ · · · ∪ Ru| ≤ cm, it implies that Rl+1 ∪ · · · ∪ Ru

(denoted byMl) can be repaired through migration, in parallel
with the reconstruction of Rl. We break the while-loop and
the algorithm completes (Lines 5-8).

Otherwise, we find the reconstruction sets with the fewest
chunks such that they can be repaired through migration in a
repair round. We find the largest x, where

∑u
i=x |Ri| > cm

(Line 9). To fine-tune our selection, we further select a subset
R′x ⊂ Rx (the chunks of R′x are randomly selected from
Rx), where |R′x| = cm−

∑u
i=x+1 |Ri|, such that R′x can also

be repaired through migration (Lines 10-11). Finally, we set
Ml = R′x ∪ Rx+1 ∪ · · · ∪ Ru, which are the cm chunks to
be repaired through migration (Line 12), in parallel with the
reconstruction of Rl in the same repair round. We update l
and u (Lines 13-14) and iterate for another repair round.

Example: Figure 6 gives an example on how we schedule
the repair rounds. Suppose that we have d = 7 reconstruction
sets. For simplicity, we fix cm = 4 (note that for hot-standby
repair, cm may change across different repair rounds as it is a
function of G = cr). For the first repair round, we find that
the largest x is five, such that |R5|+ |R6|+ |R7| > cm = 4.
We further find a subset R′5 ⊂ R5 with one chunk, such that
M1 = R′5 ∪R6 ∪R7 is repaired through migration in parallel
with the reconstruction of R1 in the first repair round. Note
that the number of remaining chunks in R5 reduces to two.
Finally, we can repair all chunks in three repair rounds.

Algorithm 2 Repair Scheduling
Input: Reconstruction sets
Output: Chunks of the STF node to be migrated and reconstructed

in each repair round
1: Sort {R1,R2, · · · ,Rd}, where |R1| ≥ |R2| ≥ · · · ≥ |Rd|
2: Initialize l = 1 and u = d
3: while true do
4: Compute cm from cr , where cr = |Rl|
5: if |Rl+1 ∪ · · · ∪ Ru| ≤ cm then
6: Ml = Rl+1 ∪ · · · ∪ Ru

7: break
8: end if
9: Find the largest x, where

∑u
i=x |Ri| > cm

10: Find a subset R′x ⊂ Rx, where |R′x|+
∑u

i=x+1 |Ri| = cm
11: Set Rx = Rx −R′x
12: Set Ml = R′x ∪Rx+1 ∪ · · · ∪ Ru

13: Set l = l + 1
14: Set u = x
15: end while

9

7

6

4

3

2

1

R1

R2

R3

R4

R5

R6

R7

7

6

4

2

R2

R3

R4

R5

6

2

R3

R4

R1

R5’

R6

R7

9

1
2

1

M1

First round

R2

R4’

R5

7

2

2
M2

Second round

R3 6

M3
R4 2

Third round

Reconstruction
sets

Reconstruction
sets

Reconstruction
sets

Fig. 6. Example of repair scheduling. Each number denotes the number of
chunks in the corresponding reconstruction set.

D. Time Complexity Analysis of Algorithms 1 and 2

We first consider the MATCH function in Algorithm 1.
MATCH aims to find the maximum matching on a candidate
reconstruction set, whose size is at most M−1

k (Section III).
Thus, the resulting bipartite graph in MATCH has at most
M−1

k · k = M − 1 chunk vertices (together with M − 1 node
vertices). Each chunk vertex connects to n− 1 node vertices,
so there are at most (M − 1)(n − 1) edges in the bipartite
graph. Thus, MATCH finds a maximum matching in a bipartite
graph in O(M2n) time (Section IV-A).

We next consider the FIND function in Algorithm 1. Forming
an initial reconstruction set (Lines 10-17) calls MATCH |C|
times. Optimizing the reconstruction set (Lines 18-38) expands
R no more than M−1

k times (Line 34), and each time calls
MATCH |C|2|R| ≤ |C2M−1

k | times (Lines 20-31). Thus, the
time complexity of FIND is O(|C|2M4n).

Overall, Algorithm 1 calls FIND at most |C| time, so its time
complexity O(|C|3M4n).

Finally, we analyze the time complexity of Algorithm 2.
Sorting d reconstruction sets (Line 1) takes O(d log d) time.
For each repair round, we scan d reconstruction sets to find the
largest x (Line 9) in O(d) time, and find the subset R′x in Rx

(Line 10) in O(|Rx|) time. Since the number of repair rounds
is at most d, the complexity of Lines 3-15 is O(d(d+ |Rx|)).
Also, as d ≤ |C| and |Rx| ≤ M−1

k , the time complexity of
Algorithm 2 is O(|C|(|C|+ M

k)).

Discussion: Note that Algorithm 1, even with polynomial
complexity, incurs high running time for large |C| and M . We
suggest two options to mitigate the overhead. The first option is
to partition the chunks of the STF node into chunk groups and
find the reconstruction sets for each chunk group (which now
becomes C). Another option is that we can run Algorithm 1
for each possible STF node in advance and store the results
when they are required [16]. We present microbenchmarks on
Algorithm 1 in Section VI-B.

V. IMPLEMENTATION

We have built a FastPR prototype in C++, including the
coding operations for chunk reconstruction using Jerasure v1.2
[31]. Our prototype has around 2,400 lines of code.

System architecture: FastPR comprises a coordinator and
multiple agents, such that each agent is deployed in a storage
node. The coordinator is responsible for instructing multiple
agents to perform repair operations. It manages the metadata
information of each chunk, including the location of the chunk
and the identity of the stripe to which the chunk belongs.
When the coordinator detects an STF node, it determines which
chunk in the STF node will be repaired through migration or
reconstruction across different repair rounds. For each repair
round, the coordinator issues commands to the associated agents
to start the repair operation. Upon receiving the commands from
the coordinator, the agent in the STF node migrates chunks to
other destination nodes, while the agents in the healthy nodes
retrieve chunks from local storage and send them to the agents
of the destination nodes for chunk reconstruction. The agents
return acknowledgments to the coordinator upon completion,
and the coordinator issues commands for the next repair round.

Integration with HDFS: We argue that FastPR can be
seamlessly integrated with state-of-the-art distributed storage
systems. As a case study, we run FastPR atop HDFS of
Hadoop 3.1.1 [3]. Figure 7 illustrates the integration of FastPR
with HDFS. Specifically, HDFS comprises a NameNode for
storage management and multiple DataNodes for storing chunks.
We deploy the coordinator on the NameNode and an agent in
each DataNode. The coordinator on the NameNode accesses
HDFS metadata by executing the command “hdfs fsck /

-files -blocks -locations”, through which the coordinator
can determine the chunk location and the stripe information.
The coordinator can then instruct the agents to start the repair
operation. Note that each HDFS chunk is associated with a
small metadata block (typically of size around 1 MB for a
128 MB HDFS chunk). In our deployment, FastPR migrates
each metadata block from the STF node to a new DataNode.

After the repair operation, the DataNodes report the new
locations of the repaired chunks to the NameNode through
periodic heartbeats, and the NameNode updates the chunk and
stripe information. We emphasize that our FastPR deployment
requires no modification to the HDFS codebase.

Multi-threading: We further accelerate a repair operation via
multi-threading. Specifically, we partition a chunk into multiple
small equal-size units called packets. When a node sends a

Coordinator

STF Node DataNode DataNode DataNode DataNode

Agent Agent Agent Agent Agent

Control flow

Migration

Reconstruction

NameNode

Fig. 7. Integration of FastPR with HDFS.

chunk to another node, it creates two threads that operate in
units of packets in a pipelined manner: one thread for reading
packets from the local storage, and another thread for sending
packets over the network. In addition, when a node is about
to store a repaired chunk, it creates one thread for decoding
the received packets, as well as multiple threads for receiving
packets from multiple nodes.

VI. PERFORMANCE EVALUATION

We evaluate FastPR in two aspects: (i) large-scale simulation
and (ii) testbed experiments on Amazon EC2.

A. Simulation Experiments

We conduct simulation on FastPR to evaluate its perfor-
mance in a large-scale storage cluster. We design a single-
machine simulator for FastPR by modifying our prototype. In
the simulator, we remove all the actual operations of disk I/Os
and network transmission from the prototype, and simulate
the operations by computing their execution times based on
the input network and disk bandwidths. Note that the main
algorithms, including finding reconstruction sets and repair
scheduling, are still preserved.

We compare FastPR with three approaches: (i) migration-
only, in which we directly migrate all the chunks of the STF
node to other healthy nodes; (ii) reconstruction-only, in which
we find the reconstruction sets based on Algorithm 1, but
we repair each of them in a repair round by reconstruction
only without calling Algorithm 2 (note that it corresponds to
the conventional reactive repair); and (iii) optimum, which we
derive from Equation (2) based on our modeled tm and tr
(Section III).

We assume the following default configurations. We con-
figure a storage cluster of M = 100 nodes with the disk
bandwidth bd = 100 MB/s and network bandwidth bn = 1 Gb/s.
We encode the chunks by RS(9, 6) adopted by QFS [28], while
we also consider RS(14, 10) (adopted by Facebook [26]) and
RS(16, 12) (coding parameters used by Azure [13]). We fix
the chunk size as 64 MB, and randomly distribute 1,000 stripes
of chunks across the storage cluster. For hot-standby repair,
we fix the number of hot-standby nodes h = 3. We vary one
configuration parameter in our simulation experiments and
evaluate its impact. We measure the repair time per chunk,
averaged over 30 runs.
Experiment A.1 (Scattered repair): Figure 8 shows the
simulation results of the repair time per chunk in scattered
repair, in which we vary M , RS(n, k), bd, and bn. Migration-
only is the worst among all approaches, since its performance

0.0

0.5

1.0

1.5

2.0

2.5

20 30 40 50 60 70 80 90 100
of Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

RS(9, 6) RS(14, 10) RS(16,12)
Erasure Codes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(a) Varying M (b) Varying RS(n, k)

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500
Disk Bandwidth (MB/s)

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

0.5 1 2 5 10
Network Bandwidth (Gb/s)

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(c) Varying bd (d) Varying bn

Fig. 8. Experiment A.1: Simulation results of repair time per chunk in scattered
repair.

0.0

0.5

1.0

1.5

2.0

2.5

20 30 40 50 60 70 80 90 100
of Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

3 4 5 6 7 8 9
of Hot-Standby Nodes

R
ep

ai
r

T
im

e
(S

ec
) Optimum

FastPR
Reconstruction
Migration

(a) Varying M (b) Varying h

Fig. 9. Experiment A.2: Simulation results of repair time per chunk in
hot-standby repair.

is bottlenecked by the STF node. Reconstruction-only has
similar performance to FastPR since it can exploit the available
bandwidth resources of the storage cluster as FastPR. However,
it incurs higher repair time per chunk than FastPR when M
is small (Figure 8(a)) or (n, k) is large (Figure 8(b)), since
the available bandwidth resources of the storage cluster are
more limited for smaller M and the repair traffic increases
for larger k. Overall, FastPR reduces the repair times of both
migration-only and reconstruction-only, for example, by 62.7%
and 40.6% for RS(16, 12) (Figure 8(b)).

In practice, FastPR deviates from the optimum since the
number of chunks of the STF node that can be repaired in
parallel depends on the chunk distribution. Nevertheless, our
simulation results show that the repair time of FastPR is only
11.4% more than the optimum on average.

Experiment A.2 (Hot-standby repair): Figure 9 shows the
simulation results of the repair time per chunk in hot-standby
repair, in which we vary M and h. The repair performance
is mainly bottlenecked by the hot-standby nodes, and the
repair time has limited variance across different values of
M (Figure 9(a)). When h = 3, FastPR reduces the repair
times of migration-only and reconstruction-only by 57.7% and
41.0%, respectively. FastPR maintains high performance in
hot-standby repair, and its repair time is only 5.4% more than
the optimum on average.

Experiment A.3 (Impact of the number of stripes): Fig-

0.0

0.1

0.2

0.3

0.4

0.5

200 400 600 800 1000
of Stripes

R
ep

ai
r

T
im

e
(S

ec
) Optimum FastPR

0.0

0.4

0.8

1.2

1.6

200 400 600 800 1000
of Stripes

R
ep

ai
r

T
im

e
(S

ec
) Optimum FastPR

(a) Scattered repair (b) Hot-standby repair

Fig. 10. Experiment A.3: Simulation results of repair time per chunk versus
the number of stripes.

ure 10 shows the repair time per chunk versus the number
of stripes distributed across the storage cluster. Here, we
only focus on FastPR and the optimum to compare their
differences. Increasing the number of stripes provides more
flexibility of FastPR to identify the reconstruction sets that
maximize parallelism. We observe that when the number of
stripes is at least 400, the differences between FastPR and the
optimum are very small (within 15%). This implies that we
can limit our selection of reconstruction sets (i.e., Algorithm 1)
to a smaller group of chunks to mitigate the running time
overhead (Section IV-D), while achieving the near-optimal
repair performance.

B. Testbed Experiments

We also conduct testbed experiments on Amazon EC2
to understand the performance of FastPR in a real-world
cloud environment. We set up 25 virtual machine instances of
type m5.large in the US East (North Virgina) region. Each
instance runs Ubuntu 14.04.5 LTS, and is equipped with two
vCPUs with 2.5 GHz Intel Xeon Platinum, 8 GB RAM, and
50 GB of EBS storage. Before running our experiments, we
conduct preliminary measurements and find that each instance
achieves 142 MB/s of disk bandwidth (on sequential writes)
and 5 Gb/s of network bandwidth (measured by iperf). We
deploy FastPR atop HDFS (Section V), in which we run the
FastPR coordinator and the HDFS NameNode in one instance,
and both a FastPR agent and an HDFS DataNode in each
of 21 instances that serve as storage nodes. We reserve the
remaining three instances for hot-standby repair (i.e., h = 3
hot-standby nodes).

We assume the following default configurations. We con-
figure the erasure coding scheme as RS(9, 6), the chunk size
as 64 MB, and the packet size as 4 MB. All instances use all
available network bandwidth (5 Gb/s) for chunk transmission.
We randomly distribute stripes across the storage cluster, such
that the number of chunks in the STF node being repaired
is fixed as 50 chunks in each experimental run for consistent
benchmarking. We compare FastPR with migration-only and
reconstruction-only (Section VI-A). We plot the average repair
time per chunk over five runs, and also include the error bars
showing the maximum and the minimum across the five runs
(some may be invisible from the plots).
Experiment B.1 (Impact of the packet size): We first study
the impact of multi-threading by evaluating the repair time
per chunk versus the packet size, varied from 1 MB to 64 MB;

0.00

0.25

0.50

0.75

1.00

1 4 16 64
Packet Size (MB)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

0.00

0.25

0.50

0.75

1.00

1 4 16 64
Packet Size (MB)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 11. Experiment B.1: Impact of the packet size.

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128
Chunk Size (MB)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128
Chunk Size (MB)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 12. Experiment B.2: Impact of the chunk size.

note that for the packet size 64 MB, we do not enable multi-
threading as it is equal to the default chunk size. Figure 11
shows that the repair time reduces for smaller packet sizes,
as multi-threading can parallelize different steps of a repair
operation. For example, when the packet size reduces from
64 MB to 4 MB, the repair time of FastPR reduces by 31.4%
(the reduction is negligible when the packet size further reduces
to 1 MB). For all packet sizes, FastPR reduces the repair times
of migration-only and reconstruction-only by 37.7-52.3% and
1.9-24.7%, respectively.

Experiment B.2 (Impact of the chunk size): We now evaluate
the impact of the chunk size, varied from 32 MB to 128 MB
(where the packet size is fixed as 4 MB). Figure 12 shows that
the repair time per chunk increases with the chunk size, yet
FastPR still reduces the repair times of migration-only and
reconstruction-only by 31.1-47.9% and 10.0-28.3% across all
chunk sizes, respectively.

Experiment B.3 (Impact of different erasure codes): We
now evaluate the repair time per chunk for different erasure
codes. Here, we focus on RS(9, 6), RS(14, 10), and RS(16, 12).
Figure 13 shows the results. The performance of migration-only
remains unaffected by different (n, k), yet the repair time of
reconstruction-only increases significantly in RS(14, 10) and
RS(16, 12) compared to RS(9, 6), as it increases the amount of
repair traffic. FastPR also sees higher repair time in RS(14, 10)
and RS(16, 12), yet it still achieves the least repair time among
all approaches. Overall, FastPR reduces the repair times of
migration-only and reconstruction-only by 42.6% and 17.1%
in RS(9, 6), 24.9% and 63.4% in RS(14, 10), and 9.6% and
71.7% in RS(16, 12), respectively.

Experiment B.4 (Impact of network bandwidth): We study
how the network bandwidth (i.e., bn) affects the repair time. We
use the Wonder Shaper tool [1] to control the network adapter
bandwidth. Here, we vary bn as 0.5 Gb/s, 1 Gb/s, and 5 Gb/s (the
default one without bandwidth limiting). Figure 14 shows that

0.0

0.5

1.0

1.5

2.0

RS(9,6) RS(14,10) RS(16,12)
Erasure Codes

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

RS(9,6) RS(14,10) RS(16,12)
Erasure Codes

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 13. Experiment B.3: Impact of different erasure codes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1 5
Network Bandwidth (Gb/s)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1 5
Network Bandwidth (Gb/s)

R
ep

ai
r

T
im

e
(S

ec
) FastPR

Reconstruction
Migration

(a) Scattered repair (b) Hot-standby repair

Fig. 14. Experiment B.4: Impact of network bandwidth.

the repair time of reconstruction-only significantly increases
when the network bandwidth is limited, as it incurs a high
amount of repair traffic. Overall, FastPR reduces the repair
times of migration-only and reconstruction-only by 27.7%
and 62.5% when bn = 0.5 Gb/s, and 27.1% and 61.5% when
bn = 1 Gb/s, respectively.
Experiment B.5 (Microbenchmarks): A key component of
FastPR is to find the reconstruction sets (Algorithm 1 in
Section IV-B). We study Algorithm 1 in two aspects.

First, we analyze the effectiveness of optimizing the selection
of the initial reconstruction set in Algorithm 1 (i.e., Lines 18-
38). We compare the numbers of reconstruction sets returned by
Algorithm 1 with and without Lines 18-38, denoted by dopt and
dini, respectively. Intuitively, if dopt < dini, the optimization
step reduces the number of reconstruction sets returned and
hence includes more chunks in each reconstruction set on
average to exploit a higher degree of parallelism. Figure 15(a)
shows the reduction of dopt compared to dini versus the number
of repaired chunks (i.e., |C|), averaged over 30 runs. Overall,
dopt is 13% less than dini, while the reduction becomes fairly
stable when the number of repaired chunks is at least 200.

Second, we measure the running time of Algorithm 1 in one
of our Amazon EC2 instances. Figure 15(b) shows the running
time of Algorithm 1 versus the number of repaired chunks,
averaged over 30 runs. The running time increases from 0.84 s
for 100 repaired chunks to 254.63 s for 1,000 repaired chunks.
Nevertheless, we can run Algorithm 1 on the repaired chunks
of the STF node by groups and pre-compute Algorithm 1 for
each STF node offline to mitigate its overhead (Section IV-D).

VII. RELATED WORK

Proactive fault tolerance: Our work builds on the potential
of accurate failure prediction [6], [18], [23], [42], [43], [45],
and takes one step further to improve repair performance in
erasure-coded storage. Some studies take proactive approaches
to enhance the fault tolerance of storage systems. Proactive

0%

5%

10%

15%

20%

200 400 600 800 1000
of Repaired Chunks

R
ed

uc
tio

n

0

100

200

300

400

200 400 600 800 1000
of Repaired Chunks

T
im

e
(S

ec
)

(a) Reduction of dopt over dini (b) Running time of Algorithm 1

Fig. 15. Experiment B.5: Microbenchmarks.

replication [9], [39] injects redundant data before failures
occur to avoid traffic bursts during repair when failures
happen. RAIDShield [22] uses the reallocated sector count to
identify STF disks and replaces them in advance. ProCode [19]
leverages disk failure prediction results to store erasure-coded
data in STF nodes with replication, so as to balance between
recovery performance and storage efficiency. While FastPR
also builds on accurate disk failure prediction, it does not
introduce redundant data, but instead focuses on accelerating
the repair of an STF node.

Reactive repair: Most repair approaches for erasure-coded
storage are reactive and triggered only when failures actually
happen. Some studies propose new erasure codes with less
repair traffic (e.g., MSR codes [8], [29], [32], [40] and LRCs
[13], [35]). We argue that our work applies to such new erasure
codes (Section III). On the other hand, some studies design
repair-efficient techniques that work for existing erasure codes,
such as lazy repair [5], [38] or parallelizing partial repair
operations [20], [21], [24], [37]. FastPR also targets existing
erasure codes (RS codes in particular), but takes a predictive
repair approach to improve repair performance.

To exploit all available bandwidth resources in repair, parity
declustering [12], [25] distributes stripes across multiple nodes
to parallelize repair operations. RAMCloud [27] applies a
similar design for fast repair under replication-based storage
(i.e., replicas are scattered across the entire system). As a
comparison, FastPR focuses on maximizing the parallelism
of repair operations under the parity-declustered layout.

VIII. CONCLUSION

This paper explores the potential of leveraging the accurate
failure prediction of a storage cluster to minimize the total
repair time of erasure-coded storage. We present FastPR, a fast
predictive repair approach that repairs in advance the chunks
of an STF node before it actually fails. Its core idea is to
carefully couple both migration and reconstruction to fully
parallelize a repair operation across the whole storage cluster.
Our mathematical analysis, large-scale simulation, and Amazon
EC2 experiments demonstrate that FastPR outperforms the
conventional reactive repair approach that triggers repair
operations only after a failed node is detected.

Acknowledgements: We thank our shepherd, Etienne Rivière,
and the anonymous reviewers for their valuable comments.
This work was supported by HKRGC (GRF 14216316 and
CRF C7036-15G) and NSFC (61602120).

REFERENCES

[1] The Wonder Shaper 1.4. https://github.com/magnific0/wondershaper.
[2] Erasure Coding in Ceph. https://ceph.com/planet/erasure-coding-in-ceph/,

2014.
[3] Apache Hadoop 3.1.1. https://hadoop.apache.org/docs/r3.1.1/, 2018.
[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler.

An Analysis of Latent Sector Errors in Disk Drives. In Proc. of ACM
SIGMETRICS, 2007.

[5] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker. Total
Recall: System Support for Automated Availability Management. In
Proc. of USENIX NSDI, 2004.

[6] M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wiesmann. Predicting
Disk Replacement towards Reliable Data Centers. In Proc. of ACM
SIGKDD, 2016.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2009.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE Trans. on
Information Theory, 56(9):4539–4551, 2010.

[9] A. Duminuco, E. Biersack, and T. En-Najjary. Proactive Replication in
Distributed Storage Systems Using Machine Availability Estimation. In
Proc. of ACM CoNEXT, 2007.

[10] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, 2010.

[11] M. Goldszmidt. Finding Soon-to-fail Disks in a Haystack. In Proc. of
USENIX HotStorage, 2012.

[12] M. Holland, G. A. Gibson, and D. P. Siewiorek. Architectures and
Algorithms for On-line Failure Recovery in Redundant Disk Arrays.
Distributed Parallel Databases, 2(3):295–335, 1994.

[13] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin, et al. Erasure Coding in Windows Azure Storage. In Proc.
of USENIX ATC, 2012.

[14] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan. Improved
Disk-Drive Failure Warnings. IEEE Trans. on Reliability, 51(3):350–357,
Sep 2002.

[15] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are Disks the Dominant
Contributor for Storage Failures?: A Comprehensive Study of Storage
Subsystem Failure Characteristics. ACM Trans. on Storage, 4(3):7, 2008.

[16] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, 2012.

[17] Y.-L. Lee, D.-C. Juan, X.-A. Tseng, Y.-T. Chen, and S.-C. Chang. DC-
Prophet: Predicting Catastrophic Machine Failures in DataCenters. In
Proc. of ECML-PKDD, 2017.

[18] J. Li, X. Ji, Y. Jia, B. Zhu, G. Wang, Z. Li, and X. Liu. Hard Drive
Failure Prediction Using Classification and Regression Trees. In Proc.
of IEEE/IFIP DSN, 2014.

[19] P. Li, J. Li, R. J. Stones, G. Wang, Z. Li, and X. Liu. Procode: A
Proactive Erasure Coding Scheme for Cloud Storage Systems. In Proc.
of IEEE SRDS, 2016.

[20] R. Li, X. Li, P. P. C. Lee, and Q. Huang. Repair Pipelining for Erasure-
Coded Storage. In Proc. of USENIX ATC, 2017.

[21] X. Li, R. Li, P. P. C. Lee, and Y. Hu. OpenEC: Toward Unified and
Configurable Erasure Coding Management in Distributed Storage Systems.
In Proc. of USENIX FAST, 2019.

[22] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W. Hsu.
RAIDShield: Characterizing, Monitoring, and Proactively Protecting
Against Disk Failures. In Proc. of USENIX FAST, 2015.

[23] F. Mahdisoltani, I. Stefanovici, and B. Schroeder. Proactive Error
Prediction to Improve Storage System Reliability. In Proc. of USENIX
ATC, 2017.

[24] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-Parallel-Repair
(PPR): A Distributed Technique for Repairing Erasure Coded Storage.
In Proc. of ACM EuroSys, 2016.

[25] R. R. Muntz and J. C. S. Lui. Performance Analysis of Disk Arrays
under Failure. In Proc. of VLDB, Aug 1990.

[26] S. Muralidhar, W. Lloyd, S. Roy, et al. F4: Facebook’s Warm Blob
Storage System. In Proc. of USENIX OSDI, 2014.

[27] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum.
Fast Crash Recovery in RAMCloud. In Proc. of ACM SOSP, 2011.

[28] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly. The
Quantcast File System. Proc. of the VLDB Endowment, 6(11):1092–1101,
2013.

[29] L. Pamies-Juarez, F. Blagojevic, R. Mateescu, C. Guyot, E. E. Gad, and
Z. Bandic. Opening the Chrysalis: On the Real Repair Performance of
MSR Codes. In Proc. of USENIX FAST, 2016.

[30] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in a Large
Disk Drive Population. In Proc. of USENIX FAST, 2007.

[31] J. Plank, S. Simmerman, and C. Schuman. Jerasure: A Library in
C/C++ Facilitating Erasure Coding for Storage Applications-Version 1.2.
University of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[32] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran.
Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for
I/O, Storage, and Network-bandwidth. In Proc. of USENIX FAST, 2015.

[33] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A Solution to the Network Challenges of Data
Recovery in Erasure-coded Distributed Storage Systems: A Study on the
FacebookWarehouse Cluster. In Proc. of USENIX HotStorage, 2013.

[34] I. S. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

[35] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring Elephants: Novel Erasure
Codes for Big Data. Proc. of the VLDB Endowment, 6(5):325–336, 2013.

[36] B. Schroeder and G. A. Gibson. Disk Failures in The Real World: What
Does An MTTF of 1,000,000 Hours Mean to You? In Proc. of USENIX
FAST, 2007.

[37] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering Single Failure Recovery
in Clustered File Systems. In Proc. of IEEE/IFIP DSN, 2016.

[38] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin. Lazy
Means Smart: Reducing Repair Bandwidth Costs in Erasure-Coded
Distributed Storage. In Proc. of ACM SYSTOR, 2014.

[39] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon, R. T.
Morris, M. F. Kaashoek, and J. Kubiatowicz. Proactive Replication for
Data Durability. In Proc. of IPTPS, 2006.

[40] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan,
P. V. Kumar, A. Barg, M. Ye, S. Narayanamurthy, et al. Clay Codes:
Moulding MDS Codes to Yield an MSR Code. In Proc. of USENIX
FAST, 2018.

[41] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding vs. Replication:
A Quantitative Comparison. In Proc. of IPTPS, 2002.

[42] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu. Disk Failure
Prediction in Data Centers via Online Learning. In Proc. of ICPP, 2018.

[43] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,
W. Zhang, J.-G. Lou, et al. Improving Service Availability of Cloud
Systems by Predicting Disk Error. In Proc. of USENIX ATC, 2018.

[44] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang, Y. Chen, H. Dong, X. Qu, and L. Song. PreFix:
Switch Failure Prediction in Datacenter Networks. In Proc. of ACM
SIGMETRICS, 2018.

[45] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma. Proactive Drive
Failure Prediction for Large Scale Storage Systems. In Proc. of IEEE
MSST, 2013.

	Introduction
	Background and Problem
	Erasure Coding
	Predictive Repair
	Repair Scenarios

	Mathematical Analysis
	Fast Predictive Repair
	Design Overview
	Finding Reconstruction Sets
	Repair Scheduling
	Time Complexity Analysis of Algorithms 1 and 2

	Implementation
	Performance Evaluation
	Simulation Experiments
	Testbed Experiments

	Related Work
	Conclusion
	References

