
IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023 1871

Optimal Rack-Coordinated Updates in
Erasure-Coded Data Centers: Design and Analysis

Guowen Gong, Zhirong Shen , Member, IEEE, Liang Chen, Suzhen Wu , Member, IEEE, Xiaolu Li ,
Patrick P. C. Lee , Senior Member, IEEE, Zhiguo Wan , and Jiwu Shu, Fellow, IEEE

Abstract—Erasure coding has been extensively deployed in to-
day’s data centers to tackle prevalent failures, yet it is prone to
substantial cross-rack traffic for parity updates. In this article,
we propose a new rack-coordinated update mechanism to sup-
press the cross-rack update traffic, which comprises two successive
phases: a delta-collecting phase that collects data delta chunks,
and another selective parity update phase that renews the parity
chunks based on the update pattern and parity layout. We further
design RackCU, an optimal rack-coordinated update solution that
achieves the theoretical lower bound of the cross-rack update
traffic. We also perform reliability analysis, demonstrating that
RackCU can attain a lower data loss probability via shortening the
update procedure. We conduct extensive evaluations, in terms of
large-scale simulation and real-world data center experiments. We
show thatRackCU can reduce 16.5-77.1% of the cross-rack update
traffic and hence improve 24.9-772.0% of the update throughput.

Index Terms—Cross-rack update traffic, erasure codes, rack-
coordinated updates.

Manuscript received 17 March 2022; revised 21 November 2022; accepted
16 December 2022. Date of publication 5 January 2023; date of current version
9 June 2023. This work was supported in part by the National Key R&D
Program of China under Grant 2021YFF0704001, in part by the Natural Sci-
ence Foundation of China under Grants 62072381, 61832011, and 62272425,
in part by the Science and Technology Projects of Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province un-
der Grant (IKKEM)HRTP-[2022]-1. The work of Suzhen Wu was supported
in part by the National Natural Science Foundation of China under Grants
U22A2027, 61972325, and 61872305, in part by the Open Research Projects
of Zhejiang Lab under Grant 2021DA0AM01/002, and in part by the Open
Project Program of Wuhan National Laboratory for Optoelectronics under Grant
2021WNLOKF011. The work of Patrick P. C. Lee was supported by Research
Grants Council of HKSAR under Grant AoE/P-404/18 and Research Matching
Grant Scheme. Recommended for acceptance by H. Matsutani. (Corresponding
author: Zhirong Shen.)

Guowen Gong, Liang Chen, Suzhen Wu, and Jiwu Shu are with the
School of Informatics, Xiamen University, Xiamen 361005, China (e-mail:
23020201153743@stu.xmu.edu.cn; liang0_0chen@foxmail.com; suzhen@
xmu.edu.cn; jwshu@xmu.edu.cn).

Zhirong Shen is with the School of Informatics, Xiamen University, Xiamen
361005, China, and also with the Innovation Laboratory for Sciences and Tech-
nologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005,
China (e-mail: shenzr@xmu.edu.cn).

Xiaolu Li is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:
lixl666@hust.edu.cn).

Patrick P. C. Lee is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong,, Hong Kong (e-mail:
pclee@cse.cuhk.edu.hk).

Zhiguo Wan is with the Zhejiang Lab, Hangzhou 311121, China (e-mail:
wanzhiguo@zhejianglab.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TC.2023.3234215, provided by the authors.

Digital Object Identifier 10.1109/TC.2023.3234215

I. INTRODUCTION

DATA centers are often built atop numerous storage nodes
(also called nodes) to support a large number of services,

including data storage, information retrieval, and MapReduce
computation [14]. The large scale of data centers makes failures,
which are originally accidental, become the norm [11], [12].
To tackle prevalent unexpected failures, production storage
systems [4], [16], [27] often resort to maintaining additional
data redundancy through replication [26] and erasure coding
[16], such that the systems can leverage the pre-stored data
redundancy to restore the lost data. Compared to replication,
erasure coding can assuredly retain the same degree of fault
tolerance with much less storage overhead [40], and hence is
preferable in practical storage systems [2], [4], [7], [24]. In
principle, erasure coding encodes a group of data chunks to
generate a small number of redundant chunks (also called parity
chunks), such that a subset of data and parity chunks still suffice
to rebuild the original data chunks.

While being more storage-efficient, erasure coding incurs
substantial update traffic (i.e., data transmitted over the network
in update operations), making update performance unsatisfac-
tory. The rationale is that to maintain encoding consistency, any
change to the data chunks triggers additional updates to the cor-
responding parity chunks. Although we can perform the parity
update in the background, it still triggers considerable storage
and network I/Os, resulting in resource contention with fore-
ground applications. For example, the conventional delta-based
update approach (see Section II.C) requires to transmit m parity
delta chunks for parity update whenever a data chunk is updated,
implying that the storage and network I/Os are amplified for m
times. Hence, realizing efficient parity update of erasure coding
can not only improve the overall system reliability (for the newly
updated data), but also mitigate the performance impact on the
foreground applications.

The update problem of erasure coding in data centers becomes
more complicated. Data centers usually organize nodes hierar-
chically, where multiple nodes are first organized into a rack
and the racks are further interconnected via the network core
— an abstraction of aggregation switches and core routers [14].
Such a hierarchical organization naturally results in the band-
width diversity phenomenon, where the cross-rack bandwidth
is often much more scarce than the intra-rack bandwidth [5],
[8], [14] and further fiercely consumed by various workloads
(e.g., replication writes [8] and MapReduce shuffling [5]). It is
reported that the ratio of the available cross-rack bandwidth per

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-3582-0792
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0003-1319-1224
mailto:23020201153743@stu.xmu.edu.cn
mailto:liang0_0chen@foxmail.com
mailto:suzhen@xmu.edu.cn
mailto:suzhen@xmu.edu.cn
mailto:jwshu@xmu.edu.cn
mailto:shenzr@xmu.edu.cn
mailto:lixl666@hust.edu.cn
mailto:pclee@cse.cuhk.edu.hk
mailto:wanzhiguo@zhejianglab.com
https://doi.org/10.1109/TC.2023.3234215


1872 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

node and the intra-rack bandwidth often ranges from 1/20 to
1/5 and may even drop down to 1/240 in some extreme cases
[14]. Hence, when deploying erasure coding in data centers to
mitigate failures, suppressing the cross-rack update traffic (i.e.,
data transferred across racks for update operations) is clearly a
crucial issue to be addressed.

Existing studies of erasure-coded updates mainly focus on
mitigating disk seeks [6], [18], decreasing the number of parity
chunks being updated [32], [34], [36], and reducing update
traffic [29], [38]. While CAU [33] can mitigate cross-rack up-
date traffic, it degrades system reliability (by postponing parity
updates) and falls short on achieving the theoretically minimum
cross-rack update traffic. How to minimize the cross-rack update
traffic without compromising system reliability is unfortunately
largely overlooked by existing studies.

We propose rack-coordinated update, a new parity update
mechanism that comprises a delta-collecting phase and another
selective parity update phase to renew the parity chunks imme-
diately after data update, with the objective of minimizing the
cross-rack update traffic with system reliability guaranteed. The
main idea of the rack-coordinated update is to collect data delta
(i.e., the difference between the old and new data chunks) in
some dedicated racks (called collector racks), and update the
parity chunks by selecting an appropriate update approach. We
further design RackCU, the optimal Rack-Coordinated Update
solution that reaches the lower bound of the cross-rack update
traffic with linear computational complexity, by carefully select-
ing the collector racks based on the update pattern and parity
layout. To summarize, our contributions include:
� We propose a new rack-coordinated update mechanism that

aims to significantly mitigate the cross-rack update traffic.
� We design RackCU, an optimal rack-coordinated update

solution that reaches the lower bound of the cross-rack
update traffic. We also show that RackCU is a general
design for different representative erasure codes.

� We carry out reliability analysis, showing that RackCU
reduces the data loss probability during updates by up to
42.7% due to its optimized update procedure.

� We implement a RackCU prototype and conduct extensive
evaluation via both large-scale simulation and Alibaba
Cloud Elastic Compute Service (ECS) [1] experiments.
We show that RackCU reduces 16.5-77.1% of cross-rack
update traffic and hence increases 24.9-772.0% of update
throughput.

OurRackCU prototype can be reached via https://github.com/
ggw5/RackCU-code.

II. BACKGROUND

We introduce the architecture of data centers (Section II.A)
and elaborate erasure coding (Section II.B). We also describe the
parity update in erasure coding (Section II.C) and erasure-coded
data centers (Section II.D).

A. Data Center

We focus on a data center with a two-layer hierarchical archi-
tecture, in which a bunch of nodes are first organized into a rack

Fig. 1. Example of a data center deployed with RS(6,3).

and multiple racks are further interconnected by the network
core (i.e., aggregation and core switches). Such an architecture
has been applied in modern data centers [11], [24] and assumed
in previous work [8], [15], [33], [37], [38]. Fig. 1 depicts a
data center with four racks and each rack comprises four nodes.
The hierarchical architecture results in the bandwidth diversity
phenomenon. That is, as being shared and fiercely competed
among the nodes within the same rack, the cross-rack bandwidth
is often a small fraction of the intra-rack bandwidth [5], [8],
[14]. Even worse, the cross-rack communication continues to
grow dramatically, as large-scale analytic workloads prevalently
distribute jobs across multiple racks [22].

B. Erasure Coding

Erasure codes are often configured by two parameters (namely
k and m) to balance storage overhead and fault tolerance capa-
bility. At a high level, erasure codes operate using an encoding
operation (to generate additional redundancy on the data) and
another decoding operation (to recover the original data). In the
encoding stage, erasure codes encode k data chunks to generate
additionalmparity chunks via arithmetics over Galois finite field
[31]. These k +m chunks that are encoded together collectively
constitute a stripe, promising that any k out of the k +m chunks
within a stripe suffice to reproduce the original k data chunks.
In other words, erasure codes can tolerate any m chunk failures
within each stripe. Hence, by distributing the k +m chunks of
each stripe across k +m nodes (one chunk per node), erasure
codes can tolerate any m node failures. Further, we can tolerate
any single rack failure by storing at most m chunks of any stripe
in a rack, as we can always fetch at least k surviving chunks of
the same stripe from other available racks (aside from the failed
one).

In this article, to facilitate the understanding, we mainly
use Reed-Solomon codes (RS codes) [31] as an instance, as
they are popularly deployed in production systems [2], [4],
[7], [24], [27]. Nevertheless, we also show that our approach
can be readily extended to other codes like locally-repairable
codes (LRCs) [16], [28] (see Sections III.D and V.B). We use
RS(k,m) to denote the RS codes configured by the parameters
k and m throughout the article. Fig. 1 shows the placement of
a stripe encoded by RS(6,3) (i.e., k = 6 and m = 3) in a data
center, which can tolerate any single rack failure, as at most

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/ggw5/RackCU-code
https://github.com/ggw5/RackCU-code


GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1873

three chunks (i.e., m chunks) of the same stripe are stored in a
rack.

C. Delta-Based Parity Update in Erasure Coding

In this article, we mainly consider the delta-based update in
erasure coding [6], [18], [33]. Suppose that {D1, D2, . . . , Dk}
and {P1, P2, . . . , Pm} represent the k data chunks and the m
parity chunks of a stripe, respectively. Each parity chunk Pj

(1 ≤ j ≤ m) can be calculated as a linear combination of the k
data chunks via the Galois Field arithmetic [30], given by

Pj =

k∑

i=1

γi,jDi, (1)

where γi,j (1 ≤ i ≤ k and 1 ≤ j ≤ m) is the encoding coeffi-
cient used by the data chunk Di to calculate the parity chunk
Pj .

Suppose that a data chunk Dh is updated to D′
h (1 ≤ h ≤ k).

To promise the encoding consistency between the data and parity
chunks, each parity chunk Pj (where 1 ≤ j ≤ m) should be
accordingly updated based on (1) as below:

P ′
j = Pj + γh,j(D

′
h −Dh) = Pj +ΔPj . (2)

Equation (2) indicates that the new parity chunk P ′
j can be

obtained by leveraging the old parity chunkPj and the data delta
chunk (i.e., D′

h −Dh, the difference between the old and new
data chunks) or the parity delta chunkΔPj (i.e.,γh,j(D′

h −Dh),
the difference between the old and new parity chunks), without
having to access the unchanged data chunks [33]. Besides, as the
encoding coefficients{γi,j}1≤i≤k,1≤j≤m can be derived once the
parameters k and m are established, they are public to all the
nodes without having to be re-transmitted.

D. Parity Update in Erasure-Coded Data Centers

We elaborate the parity update in erasure-coded data cen-
ters. There may be multiple racks containing the updated data
chunks of a stripe. Without loss of generality, suppose that the
data chunks {D1, D2, . . . , Dux

} in the rack Rx are updated to
{D′

1, D
′
2, . . . , D

′
ux
}, where ux denotes the number of updated

data chunks in Rx and Dh denotes the h-th data chunk of the
stripe (where 1 ≤ h ≤ ux). Based on (2), we can calculate the
parity delta chunk derived from the ux updated data chunks in
Rx to update the parity chunk Pj (1 ≤ j ≤ m), given by

ΔPx,j =

ux∑

h=1

γh,jΔDh, (3)

where ΔDh = D′
h −Dh denotes the data delta chunk of Dh.

Let us consider another rack Ry (Ry �= Rx) that stores ty
parity chunks, denoted by {P1, P2, · · · , Pty}. Based on (3),
there are two options to update the parity chunks in Ry , namely
data-delta-based update and parity-delta-based update [33].

Data-Delta-Based Update: It updates the parity chunks of a
rack in batch via transmitting data delta chunks directly. It first
calculates ux data delta chunks of the ux data chunks updated
in Rx (i.e., {ΔDh}1≤h≤ux

) and sends them to a relay node in
Ry , which will then forward the ux data delta chunks to the

Fig. 2. Examples of the data-delta-based update and parity-delta-based update:
(a) ux = 2 and ty = 3; (b) ux = 3 and ty = 2.

corresponding ty nodes of Ry that store the parity chunks. For
the node that keeps the parity chunk Pj (1 ≤ j ≤ ty), it will
read the old parity chunk (i.e., Pj) from local storage and renew
it by adding the parity delta chunk (i.e., ΔPx,j) with the old
parity chunk. Fig. 2(a) shows an example of the data-delta-based
update approach (whereux = 2 and ty = 3), which transmitsux

(i.e., 2) data delta chunks fromRx to update the ty parity chunks
in Ry (Ry �= Rx).

Parity-Delta-Based Update: It updates each parity chunk in
another rack individually via transmitting the corresponding
parity delta chunk. In particular, to update a parity chunk Pj

in Ry (1 ≤ j ≤ ty), the parity-delta-based update approach first
calculates a parity delta chunk ΔPx,j in Rx, and then sends
it to the corresponding node in Ry . Finally, the new parity
chunk P ′

j can be generated based on the old parity chunk Pj

and the received ΔPx,j . Fig. 2(b) shows an example of the
parity-delta-based update approach (where ux = 3 and ty = 2),
which needs to send ty (i.e., 2) parity delta chunks from Rx to
update the ty parity chunks in Ry (Ry �= Rx).

Difference: The two update approaches differ in which delta
chunk is delivered across racks and hence induce different
amounts of the cross-rack update traffic. To summarize, if there
are ux data chunks updated in the rack Rx, the data-delta-based
update (resp. parity-delta-based update) transmits ux data delta
chunks (resp. ty parity delta chunks) to renew the ty parity
chunks in another rack Ry (Ry �= Rx).

III. RACK-COORDINATED UPDATES

We elaborate the design overview of the rack-coordinated
update (Section III.A) and present a rigorous formulation (Sec-
tion III.B). We also perform in-depth theoretical analysis (Sec-
tion III.C) and design RackCU that touches the lower bound of
the cross-rack update traffic (Section III.D). We finally provide
in-depth reliability analysis (Section III.E).

A. Design Overview

In principle, the rack-coordinated update is a synthesis of
the data-delta-based update and parity-delta-based update ap-
proaches. The main idea is to allow racks to coordinate in the
parity update immediately after data chunks are updated, to
reduce the cross-rack update traffic with system reliability guar-
anteed. It breaks the whole parity update procedure into a delta-
collecting phase and another selective parity update phase that
are performed successively. Specifically, in the delta-collecting

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



1874 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Fig. 3. Guiding example of the rack-coordinated update mechanism: select
R2 and R4 as collector racks, and transmit 10 chunks in total for the parity
update.

phase, the rack-coordinated update mechanism will elect several
collector racks that are responsible for collecting data delta
chunks from other racks. On the other hand, the selective parity
update phase will choose either the data-delta-based update or
the parity-delta-based update to renew the parity chunks based
on the update pattern and parity layout of the data center, with the
primary objective of suppressing the cross-rack update traffic.
In particular, suppose that a rack Rx has ux updated data chunks
and another rack Ry (Ry �= Rx) stores ty parity chunks. The se-
lective parity update performs the following actions: if ux ≤ ty ,
it uses the data-delta-based update by sending ux data delta
chunks from Rx to Ry for updating the ty parity chunks in batch
(Fig. 2(a), where ux = 2 ≤ ty = 3); otherwise, it resorts to the
parity-delta-based update by transmitting the corresponding ty
parity delta chunks (Fig. 2(b), where ux = 3 > ty = 2). Hence,
the selective parity update needs to transmitmin{ux, ty} chunks
across racks for renewing the ty parity chunks of Ry based on
the ux updated data chunks in Rx.

Guiding Example: We show a guiding example via Fig. 3 to
elaborate the rack-coordinated update mechanism. Suppose that
a data center consists of five racks, namely {R1, R2, · · · , R5},
and each of the first three racks {R1, R2, R3} has two data
chunks updated (marked in blue). The rack-coordinated update
performs the following two phases to renew the corresponding
parity chunks of the same stripe (marked in green) in the racks
R4 and R5.

In the delta-collecting phase (Fig. 3(a)), it selects two collector
racks (R2 and R4), which fetch data delta chunks from R1 and
R3, respectively. This phase transmits four chunks across racks.

In the selective parity update phase (Fig. 3(b)), it updates the
parity chunks in R4 and R5 using the data delta chunks in the
collector racks (i.e., R2 and R4). For R2, as its data delta chunks
is more than the parity chunks in either R4 or R5, it employs the
parity-delta-based update by sending four corresponding parity
delta chunks. On the other hand, R4 has two data-delta chunks
whose number is equal to the number of parity chunks in R5,
it uses the data-delta-based update by sending two data delta
chunks toR5 for updating P3 and P4. Notice that R4 will update
P1 and P2 (also in R4) through intra-rack transmission, which is

not our concern in this article. So this phase delivers six chunks
across racks for the parity update.

Finally, the rack-coordinated update in this example needs to
transmit 10 chunks in total across racks for the parity update.
As a comparison, the conventional delta-based parity update
(Section II.C), which directly transmits m parity delta chunks
for parity update whenever a data chunk is updated, calls for the
delivery of 24 chunks across racks (calculated by multiplying
6 (i.e., number of updated data chunks) with 4 (i.e., number
of parity chunks)); while the data-delta-based update (see
Section II.D and the example in ;Fig. 2(a)) needs to transmit 12
chunks across racks.

B. Formulation

Assumptions: Our formulation is based on the following as-
sumptions. First, we assume that a rack can only store either data
chunks or parity chunks of a stripe (rather than a combination of
them). This assumption has also been made in some previous
studies [24], [42]. We try to seek the optimal solution with
minimized cross-rack update traffic under this assumption. We
pose seeking the optimal solution under the mixed storage of
the data and parity chunks of a stripe in the same rack as
our future work. Second, we assume that a rack can send the
data deltas of a stripe to only one collector rack (rather than
multiple racks) for renewing the parity chunks of the same
stripe. This assumption is to simplify the problem formulation
and save unnecessary cross-rack traffic. Third, the placement of
each stripe should ensure the rack-level fault tolerance, which is
commonly considered in extensive studies [15], [33], [37], [38]
(Section II.B).

Preliminaries: Suppose that the k data chunks of a stripe are
stored in d racks (denoted by {R1, R2, . . . , Rd}) and the corre-
sponding m parity chunks within the same stripe are distributed
in another p racks (denoted by {Rd+1, Rd+2, . . . , Rd+p}). For
example, in Fig. 3, d = 3 and p = 2. For clarity, we call the
d racks (storing data chunks) and the p racks (storing parity
chunks) data racks and parity racks of this stripe, respectively.
Consequently, each rack can serve as either the data rack or the
parity rack for different stripes, just depending on the data and
parity placement. In Fig. 3, R1, R2, and R3 are data racks of this
stripe, while R4 and R5 are both parity racks. In the rest of this
article, we mainly discuss the parity update of a single stripe.
We emphasize that the parity update of multiple stripes can be
manipulated independently.

Formulation: We now formalize the rack-coordinated up-
date problem. We first analyze the cross-rack traffic incurred
in the delta-collecting phase. We define a rack-coordinated
update solution S = {L1, L2, · · · , Ldc+pc

}, which comprises
dc data racks (dc ≤ d) and another pc parity racks (pc ≤
p) to act as the collector racks. We use {L1, L2, · · · , Ldc

}
to denote the dc selected collector racks that are data
racks (i.e., Li ∈ {R1, R2, · · · , Rd} for 1 ≤ i ≤ dc), and em-
ploy {Ldc+1, Ldc+2, · · · , Ldc+pc

} to represent the pc col-
lector racks that are actually parity racks (i.e., Ldc+j ∈
{Rd+1, Rd+2, · · · , Rd+p} for 1 ≤ j ≤ pc). For example, in
Fig. 3, we select two collector racks, including one data rack (i.e.,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1875

dc = 1 and L1 = R2) and another parity rack (i.e., pc = 1 and
L2 = R4), and hence the solution S = {L1 = R2, L2 = R4}.

Each collector rack retrieves data delta chunks from the
specified data racks in the delta-collecting phase. Let li and
l′i (where li < l′i) be the number of data delta chunks that the
collector rack Li possesses before and after the delta-collecting
phase, respectively. Therefore, a collector rack Li will receive
l′i − li data delta chunks from other data racks in total (where
1 ≤ i ≤ dc + pc). In the motivating example (Fig. 3(a)), we can
identify that the collector rack L1 (i.e., R2) receives two chunks
across racks, as l′1 = 4 (see Fig. 3(b)) and l1 = 2 (see Fig. 3(a)).
Besides, we can deduce that ldc+j = 0 (1 ≤ j ≤ pc), as any
parity rack solely stores parity chunks before the delta-collecting
phase (see assumptions of Section III.B). For example, for the
collector rackL2 (i.e.,R4) in Fig. 3(a), it is a parity rack that does
not store any data delta chunk before, so l2 = 0. Consequently,
the number of data delta chunks that the dc + pc collector racks
receive across racks in the delta-collecting phase is

Tcollect =

dc+pc∑

i=1

(l′i − li) =

dc+pc∑

i=1

l′i −
dc∑

i=1

li.

We then calculate the cross-rack traffic in the selective par-
ity update phase. For the first dc collector racks {Li}1≤i≤dc

,
it can update the corresponding td+j parity chunks for each
parity rack Rd+j (1 ≤ j ≤ p) using the selective parity up-
date approach, and hence the cross-rack traffic of the first
dc collector racks is

∑dc

i=1

∑p
j=1 min{l′i, td+j}. In Fig. 3(b),

p = 2 and td+j = 2 for 1 ≤ j ≤ 2, so the cross-rack traf-
fic of L1 is

∑1
i=1

∑2
j=1 min{4, 2} = 4. For each of the pc

collector racks Ldc+i (1 ≤ i ≤ pc) that is also a parity rack
(e.g., L2 = R4 in Fig. 3(b)), it will perform the selective
parity update approach to renew the parity chunks of the
other p− 1 parity racks (aside from Ldc+i itself). Therefore,
the cross-rack traffic caused by the last pc collector racks is∑pc

i=1

∑p
j=1,Rd+j �=Ldc+i

min{l′dc+i, td+j}. Consequently, the
number of delta chunks to be transmitted across racks in the
selective parity update phase is

Tupdate =

dc∑

i=1

p∑

j=1

min{l′i, td+j}

+

pc∑

i=1

p∑

j=1
Rd+j �=Ldc+i

min{l′dc+i, td+j}.

Finally, the total number of chunks transmitted across racks
of the rack-coordinated update solution S is

TS = Tcollect + Tupdate. (4)

Objective: Our objective is to seek the optimal rack-coordinated
update solution that minimizes the amount of the cross-rack
update traffic (i.e., minimizing TS).

C. Theoretical Analysis

Given a stripe, suppose that the numbers of the updated data
chunks in the d data racks are {u1, u2, . . . , ud} (where ui ≤ m

for rack-level fault tolerance, see Section II.B) and the numbers
of the corresponding m parity chunks in the p parity racks are
{td+1, td+2, · · · , td+p} (where

∑p
j=1 td+j = m). We use Rd∗

and Rp∗ to denote the data rack and the parity rack that have the
most updated data chunks and parity chunks, respectively. We
determine a rack L based on the following rule: if the updated
data chunks in Rd∗ is no less than the parity chunks in Rp∗ ,
then we set L = Rd∗ ; otherwise, we set L = Rp∗ . We first have
Theorem 1 about the efficacy of selecting L as a collector rack.

Theorem 1: For any rack-coordinated update solution S that
does not select L as a collector rack, we can always find another
solution S′ that chooses L as a collector rack and introduces no
more cross-rack update traffic than S.

Proof: The proof sketch is that we can always find S′ by
opportunistically replacing a collector rack in S by L. The
detailed proof is shown in the appendix of the supplementary file,
which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TC.2023.3234215.

Theorem 1 implies that even for an optimal rack-coordinated
update solution Sopt, we can also construct another optimal one
S′

opt that includes L to serve as a collector rack. Therefore, we
can have the following corollary.

Corollary 1: We can always find an optimal rack-coordinated
update solution that includes L as a collector rack.

Given any rack-coordinated update solution S′ that selects L
as a collector rack, we further deduce that selecting L as the sole
collector rack will introduce no more cross-rack update traffic
than S′. Therefore, we have Theorem 2.

Theorem 2: For any rack-coordinated update solution S′ that
comprises L as a collector rack, we can find another solution
S∗ that selects L as the sole collector rack and incurs no more
cross-rack update traffic than S′.

Proof: The detailed proof is presented in the appendix of the
supplementary file, available online.

Based on Corollary 1 and Theorem 2, we can readily deduce
the following corollary.

Corollary 2: The solution S∗ minimizes the cross-rack update
traffic for the rack-coordinated update mechanism.

D. Design of RackCU

Based on Corollary 2, we design RackCU, an optimal rack-
coordinated update solution that touches the lower bound of
the cross-rack update traffic. Algorithm 1 elaborates the main
procedure to find the collector rack L (Lines 1-8) and update the
parity chunks (Lines 9-21).

Algorithm Details: We first find the data rack Rd∗ with the
most updated data chunks and the parity rack Rp∗ with the most
parity chunks (Lines 1-2). If the number of updated data chunks
in Rd∗ is no smaller than that of parity chunks in Rp∗ , we select
Rd∗ as the sole collector rack L; otherwise, we choose Rp∗ to be
L (Lines 4-8). In the delta-collecting phase, each data rack first
calculates the data delta chunk for each updated data chunk and
sends it to the collector rack (Lines 9-12). In the selective parity
update phase, for each parity rack Rd+j (where 1 ≤ j ≤ p), if
the parity chunks that Rd+j stores is fewer than the data delta

chunks (the number is l
′
) that the collector rack possesses now,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TC.2023.3234215


1876 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Algorithm 1: Procedure of RackCU.

Input: {R1, R2, . . . , Rd} (data racks) {u1, u2, . . . , ud}
(distribution of updated data chunks)
{Rd+1, Rd+2, . . . , Rd+p} (parity racks)
{td+1, td+2, . . . , td+p} (distribution of parity

chunks)
Output: The new n− k parity chunks of the same stripe
1: Find the data rack Rd∗ , where

ud∗ = max{ui|1 ≤ i ≤ d}
2: Find the parity rack Rp∗ , where

tp∗ = max{td+j |1 ≤ j ≤ p}
3: // Determine the sole collector rack
4: if ud∗ ≥ tp∗ then
5: L = Rd∗

6: else
7: L = Rp∗

8: end if
9: // Delta-collecting phase
10: for 1 ≤ i ≤ d do
11: Send the ui data delta chunks from Ri to L
12: end for
13: // Selective parity update phase
14: for 1 ≤ j ≤ p do
15: if l

′
> td+j then

16: Send the td+j parity delta chunks to Rd+j

17: else
18: Send the l

′
data delta chunks to Rd+j

19: end if
20: Update the td+j parity chunks
21: end for

Fig. 4. Example of RackCU, which only needs to transmit eight chunks for
the parity update.

then RackCU generates the parity delta chunks for parity update
(Lines 14-16). Otherwise, RackCU sends the data delta chunks
for the parity update (Lines 17-19). RackCU finally generates
the td+j new parity chunks for Rd+j (Line 20).

Example: We show an example via Fig. 4 to clarify the work-
flow of Algorithm 1. In this example, there are three data racks
(i.e., {R1, R2, R3}) storing updated data chunks (i.e., d = 3)
and two parity racks (i.e., {R4, R5} and p = 2). All the three
data racks have the same number of updated data chunks (i.e.,

Fig. 5. Example of extension to LRCs.

u1 = u2 = u3 = 2), so ud∗ = 2; similarly, we can get tp∗ = 2,
as t4 = t5 = 2. We select L = R1 to serve as the sole collector
rack. In the delta-collecting phase, R1 collects four data delta
chunks fromR2 andR3 (Fig. 4(a)). In the selective parity update
phase, asR1 possesses six data delta chunks (which is more than
the parity chunks in any parity rack), it simply performs the
parity-delta-based update by sending four corresponding parity
delta chunks (Fig. 4(b)). Hence, RackCU transmits eight chunks
in total across racks, which is fewer than the example (shown
in Fig. 3) that selects two collector racks and sends 10 chunks
across racks for the parity update.

Extensions to LRCs: Though RackCU mainly focuses on RS
codes, we show that it can be extended for another representative
family of erasure codes called LRCs [16], [28], which are also
used in today’s commodity storage systems [3], [16]. Formally,
LRCs can be configured via three parameters, namely k, l, and
g. LRC(k, l, g) further divides k data chunks of a stripe into l
groups with k

l data chunks per group (suppose that k is divisible
by l). The k

l data chunks of each group are encoded to generate a
local parity chunk. In addition, since the g global parity chunks
are all generated from the k data chunks as in RS codes, we can
directly apply RackCU to minimize the cross-rack update traffic
to the global parity chunks (where the number of data chunks
in a rack should be no more than g): it selects a sole collector
rack based on the footprints of the updated data chunks and the
layout of global parity chunks, and then performs the selective
parity update. However, as a local group only has one local parity
chunk, RackCU requires to store at most one chunk of a local
group in a rack to minimize the cross-rack update traffic to the
local parity chunk, which will violate the placement requirement
for the updates to the global parity chunks. Hence, we choose to
use the selective parity update approach (Section II.D) that can
achieve less cross-rack update traffic to the local parity chunk.

Fig. 5 shows an example of the updating process of RackCU
for LRC(4, 2, 2). The four data chunks of a stripe are divided
into two groups, where D1 and D2 are in the first group to
generate the local parity chunk LP1, while D3 and D4 are in
the second group to calculate the local parity chunk LP2. The
two local parity chunks are stored in the rack R3. In addition,
the two global parity chunks (i.e., {GP1, GP2}) are generated
from the four data chunks and stored in R4. In this example,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1877

there are two racks (i.e., {R1, R2}) storing updated data chunks.
Fig. 5(a) shows thatRackCU updates the two local parity chunks
via parity-delta-based update. It first calculates the parity delta
chunks and then sends them to the corresponding nodes. Fig. 5(b)
shows the process ofRackCU to update the global parity chunks.
It chooses a collector rack with the most updated data chunks
(i.e., R2) to collect all the data delta chunks. The collector rack
then updates all the global parity chunks. Hence, it transmits
six chunks across racks for parity update for LRCs in this
example. We further show the effectiveness ofRackCU on LRCs
in Experiment A.4 of Section V.B.

Complexity Analysis: To find the sole collector rack, Algo-
rithm 1 needs to scan the corresponding d+ p racks of a stripe
and the computation complexity is O(d+ p). In the selective
parity update phase, Algorithm 1 scans each parity rack for the
parity update and the computation complexity is O(p). So the
overall computation complexity of Algorithm 1 is O(d+ p).

Impact on Intra-Rack Communication Patterns: The proposed
RackCUmainly considers the reduction on the cross-rack update
traffic, yet it will also change the intra-rack communication pat-
terns. Specifically, it will increase the intra-rack communications
for the collector rack, since the collector rack that gathers all the
data deltas will perform the selective parity update to update all
the parity chunks.

E. Reliability Analysis

We now analyze the reliability improvement gained by
RackCU. We choose the metric termed data loss probability
[33], [35] for reliability analysis, which measures the average
likelihood that the stored data are permanently lost in the pres-
ence of unexpected rack and node failures. Our main idea is to
demonstrate that by minimizing the cross-rack update traffic,
RackCU can quickly guarantee the encoding consistency of the
updated stripes, thereby improving the overall system reliability.

Settings: Like previous studies [33], [35], this analysis also
assesses the data loss probability under the combination of both
rack and node failures. Let θ1 and θ2 denote the expected lifespan
of a node and a rack, respectively. We use f1 and f2 to represent
the failure probabilities of a node and a rack for a duration of
time τ , respectively, calculated by

f1 = 1− e−
τ
θ1 , f2 = 1− e−

τ
θ2 , (5)

where e is Euler’s number. We estimate the values of θ1 and θ2 as
follows. We first get θ1 = 10 years from a filed study [9], which
assumes that a node fails every 10 years. For the rack failure, we
mainly focus on the top-of-rack (ToR) failure. A field study [12]
has measured the failure probabilities of five ToRs across tens of
geographically distributed data centers (Fig. 4 in [12]), showing
that the average failure probability of ToR in one year is 0.0278.
Hence, by setting f2 = 0.0278 and τ = 1 year, we can deduce
θ2 = 36 years. Hence, the values of f1 and f2 only vary with
that of τ . In what follows, we will calculate the loss probabilities
of the newly updated data during the update phases for different
approaches (the data loss probabilities of the non-updated data
in the baseline and RackCU are the same).

Comparison Approaches: We mainly compare RackCU
against the baseline delta-based update approach (also called
“the baseline” for short), which suggests renewing all the m
parity chunks by sending m parity delta chunks whenever a data
chunk is updated. Note that although we compare RackCU with
three other approaches in the performance evaluation (i.e., the
baseline, Parix [18], and CAU [33], see Section V.A), CAU is
demonstrated to have a higher data loss probability than the
baseline [33] and Parix has the same data loss probability as
the baseline. Hence, we believe that the comparison between
RackCU and the baseline on the data reliability is reasonable
and persuasive.

Assumptions: To simplify our reliability analysis, we make
the following assumptions. First, we suppose that the node
failure and the rack failure (i.e., the top-of-rack failure in our
consideration) happen independently. Second, for an updated
data chunk, we assume that its associated m parity chunks
are all updated once the corresponding parity delta chunks are
successfully transmitted to the associated m parity nodes (i.e.,
we ignore the time for storage I/Os as the network transmission
is commonly considered as the performance bottleneck in repair
[23], [38]). Third, we ignore the case when the parity node fails
at the time of the parity update, as it does not directly cause
the loss of the newly updated data chunks; in this case, we can
relocate the parity delta chunks to other interim nodes at first
and then move them back to the associated parity nodes (after
repair), so as to ensure the reliability of the newly update data
chunks during the parity update.

Failure Events and Probabilities: We then calculate the data
loss probabilities of the baseline and RackCU based on the
following analysis. We consider the deployment of RS(k,m)
in a storage system, which comprises n nodes (n ≥ k +m) and
r racks with n

r nodes per rack (suppose that n is divisible by r).
Suppose that u data chunks (1 ≤ u ≤ k) within the same stripe
are updated (without updating the corresponding parity chunks
at this time), whose footprints are across a racks (1 ≤ a ≤ r).
Hence, the newly updated data will be pertinently lost, as long
as any one of the u nodes (where the u newly updated data
chunks reside) fails before the associated m parity chunks are
successfully renewed. Let Eintact denote the event that all the u
nodes with data updated and the associated a racks are intact.
Hence, the probability of Eintact (denoted by Pr(Eintact)) can be
given by:

Pr(Eintact) = (1− f1)
u · (1− f2)

a. (6)

We use Edl to represent the event that the newly updated data
are lost. Hence, its probability Pr(Edl) can be computed as:

Pr(Edl) = 1− Pr(Eintact) = 1− (1− f1)
u · (1− f2)

a. (7)

Results: In this analysis, we consider two practical erasure codes:
(i) RS(6,3), which has been used in Hadoop HDFS [4] and QFS
[27], and (ii) RS(12,4), which is considered in Windows Azure
Storage [16]. We deploy the two erasure codes in a storage
system with 100 nodes, which are further organized into 10
racks (i.e., 10 nodes per rack). We select 14 representative
traces from MSR Cambridge Traces (MSR) [25] with different
average update sizes, where the first seven traces (i.e., src1_0,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



1878 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Fig. 6. Reliability analysis: data loss probabilities of RackCU and the baseline.

src2_2, proj_2, proj_0, src1_2, proj_3, and web_3)
have larger update sizes (see Fig. 8). We configure the chunk
size to 4 KB and set the intra-rack bandwidth as 3 Gb/s (which
is consistent with the value in our testbed evaluation, see Sec-
tion V.C). We then vary the cross-rack bandwidth (denoted
by Bcross) from 60 Mb/s (which is the cross-region bandwidth
measured in our testbed experiments, see Experiment B.4 of
Section V.C) to 150 Mb/s (i.e., one twentieth of the intra-rack
bandwidth), respectively. We then calculate the update time of
each stripe to serve as the duration of τ (see (5)) and get the data
loss probabilities for each updated stripe under RackCU and the
baseline. For each trace, we finally calculate the average data
loss probabilities of the two update approaches and show the
results in Fig. 6. We can obtain two findings.

First, RackCU significantly reduces the data loss probability
compared to the baseline for a board spectrum of real-world
traces. The underlying reason is thatRackCU effectively reduces
the cross-rack update traffic and leads to shorter update time
(i.e., a smaller value of τ ). Specifically, when the cross-rack
bandwidth is 150 Mb/s, for RS(6,3), the average data loss
probabilities of RackCU and the baseline are 1.2× 10−12 and
2.1× 10−12 (Fig. 6(a)), respectively; while for RS(12,4), the
average data loss probabilities of RackCU and the baseline are
2.6× 10−12 and 4.6× 10−12 (Fig. 6(b)), respectively. When the
cross-rack bandwidth is more stringent and drops to 60 Mb/s,
the update procedure lengthens and hence the average data loss
probabilities of RackCU and the baseline both increase. For
RS(6,3), the average data loss probabilities of RackCU and the
baseline increase to 2.9× 10−12 and 5.4× 10−12 (Fig. 6(c)),
respectively; while for RS(12,4), the average data loss probabil-
ities of RackCU and the baseline increase to 6.4× 10−12 and
1.1× 10−11 (Fig. 6(d)), respectively.

Second, RackCU is more advantageous in the environments
with larger update sizes. In particular, compared to the baseline,
RackCU reduces the data loss probability by 44.3% for the first
seven traces. The reduction shrinks to 41.1% for the last seven
traces. This is because RackCU can gain more traffic reduction
for the traces with larger update sizes (Experiment A.1,
Section V.B).

Fig. 7. System architecture of RackCU.

IV. IMPLEMENTATION

We implement a RackCU prototype in C with around 2,800
lines of codes (LoC), and realize the encoding functionality via
Jerasure v1.2 [30].

System Architecture: Fig. 7 presents the architecture of our
RackCU prototype, which comprises three components: a coor-
dinator sitting on the metadata server, a proxy in each rack,
and an agent on every node. The coordinator manages each
chunk’s metadata, including the stripe identity to which the
chunk belongs and the node where a chunk resides. The proxy is
responsible for receiving the data delta chunks once the rack it
resides serves as a collector rack, while the agent is in charge of
interacting with the coordinator, sending the data delta chunks,
and calculating the new parity chunks.

Operating Flow: To update data chunks, the client first sends
an update request with the corresponding chunk ID to the co-
ordinator. The coordinator then seals the stripe identity and the
node associated to this chunk into an access token, and returns
it to the client. Instructed by the access token, the client writes
new data chunks to the target nodes and returns an ACK to imply
the completeness of the update operation.

Fig. 7 then illustrates the parity update procedure. The coor-
dinator first determines the collector rack based on the footprints
of the updated data chunks and the associated parity chunks, and
launches commands to the agents of the involved nodes as well
as the proxy of the collector rack for instructing the parity update

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1879

Fig. 8. Update sizes of MSR Cambridge Traces [25].

(step ❶). Upon receiving the command, the agent calculates the
data delta chunk and sends it to the proxy of the collector rack
(step ❷). After collecting enough data delta chunks, the proxy
then performs the selective parity update to update the parity
chunks. Once generating the new parity chunk, the agent of
the parity node (i.e., the node storing parity chunks) commits
an ACK to the coordinator. The coordinator understands the
completeness of the parity update of a stripe once successfully
collecting ACKs from all the m parity nodes of this stripe.

V. PERFORMANCE EVALUATION

We conduct extensive performance evaluation via both of
large-scale simulation and real-world cloud data center experi-
ments to study the real performance of RackCU. We summarize
our major findings below: compared to the state-of-the-art al-
gorithms, (1) RackCU saves 16.5-77.1% of cross-rack update
traffic (Section V.B); (2) RackCU increases 24.9-772.0% of
update throughput (Section V.C).

A. Preliminaries

Traces: We assess the update performance via trace-driven
evaluation. We employ MSR Cambridge Traces (MSR) [25],
which record the I/O patterns from 13 core servers of a data
center. Every trace consists of successive read/write requests,
each of which records the request type (read or write), the start
position of the requested data, and the request size, etc. We first
classify the 36 traces based on the update size by averaging the
operating sizes of all the update requests in a trace. Fig. 8 shows
that the update sizes dramatically vary across different traces,
ranging from 4.3 KB to 52.0 KB.

Counterparts: We compareRackCU to another three state-of-
the-art approaches: (i) cross-rack-aware update (CAU) [33], (ii)
the baseline delta-based update approach, and (iii) Parix [18].
We summarize these three approaches as below.
� CAU [33]: CAU updates parity chunks simply through the

selective parity update 1: if the updated data chunks of
a data rack are more than the parity chunks of a parity
rack, CAU updates those parity chunks via transmitting
parity delta chunks; otherwise, CAU updates them through
delivering data delta chunks.

1.We remove the data grouping and interim replication from CAU [33] and let
CAU merely perform the selective parity update. We emphasize that RackCU
can achieve higher reliability than the original CAU [33].

� The baseline: When a data chunk is updated, the baseline
will send the m corresponding parity delta chunks to gen-
erate the new parity chunks based on (2).

� Parix [18]: Parix updates parity chunks via two phases:
(1) for a data chunk that is updated for the first time, Parix
sends both the old and the new data chunks to all the m
parity nodes and keeps them in an append-only log; (2) for
the data chunk that has been updated before, Parix solely
transmits the new data chunk to all the m parity nodes. To
update a parity chunk, each parity node reads the old and
the newest data chunks from local storage to derive the new
parity chunk based on (2).

We summarize that Parix incurs additional network traffic (for
transmitting the old data chunk updated for the first time), but
avoids frequent storage I/O operations (for reading the old parity
chunk) to generate the new parity chunk.

B. Large-Scale Simulation

We first carry out large-scale simulation. We remove the
storage and network operations of the RackCU prototype, and
keep eyes on the amount of induced cross-rack traffic.

Experimental Setup: We use the following default configura-
tions in this simulation. We deploy RS(12,4) (also considered
in Windows Azure Storge [16]) in a data center, which is built
atop of 200 nodes with 10 racks (i.e., 20 nodes per rack). The
data chunks and parity chunks within the same stripe are stored
in different racks. If the number of racks is greater than k +m
(i.e., number of chunks of a stripe), we place a stripe across
k +m racks for maximizing rack-level fault tolerance. We then
partition the address space of each trace into units of chunks and
set the chunk size as 4 KB. When replaying a trace, we extract
the start address and the operating size in each update request,
and identify the chunk IDs to be updated. We then update the
data chunks as well as the corresponding parity chunks by using
the four parity update approaches, and measure the introduced
cross-rack update traffic. We repeat each experiment for ten runs
and show the average results as well as the error bars indicating
the maximum and minimum values across the test. Note that
the error bars of the baseline and Parix in the simulation are all
zeros, since we separate data and parity chunks of a stripe across
different racks. Both the baseline and Parix send m parity delta
chunks to update the m parity chunks (resided in other racks)
whenever a data chunk is updated, so their cross-rack update
traffic is constant under a given trace.

Experiment A.1 (Impact of Update Size): We first study the
impact of the update size by selecting 14 traces: seven traces with
larger update sizes (i.e., 38.6 KB on average) and another seven
traces with smaller update sizes (i.e., 5.8 KB on average). Fig. 9
shows the results, which are normalized by that of the baseline
for clarity. Among all the 14 traces, RackCU reduces 29.8%,
58.9%, and 64.4% of the cross-rack update traffic on average
compared to CAU, the baseline, and Parix, respectively. In
addition,RackCU is more advantageous on saving the cross-rack
update traffic for the traces with larger update sizes. Statistically,
RackCU saves 38.2%, 67.0%, and 75.1% of the cross-rack
update traffic on average compared to CAU, the baseline, and

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



1880 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Fig. 9. Experiment A.1 (Impact of update size). Here, we normalize the results
by that of the baseline for clear presentation (as the cross-rack traffic varies
dramatically across different traces). The smaller value is better.

Fig. 10. Experiment A.2 (Impact of erasure coding).

Parix for the seven traces with larger update sizes (Fig. 9(a)); the
reductions shrink to 22.1%, 50.9%, and 55.1% for other seven
traces with small update sizes (Fig. 9(b)), respectively.

Experiment A.2 (Impact of Erasure Coding): We evaluate the
impact of erasure coding parameters via choosing two traces
(i.e.,src1_0 andsrc2_2) with larger update sizes and another
two traces (i.e., wdev_3 and rsrch_2) with smaller update
sizes. We focus on the following three erasure coding schemes:
RS(6,3) (selected in QFS [27] and Hadoop HDFS [4]), RS(10,4)
(deployed in Facebook f4 [24]), and RS(12,4) (considered in
Windows Azure Storage [16]). Fig. 10 implies that RackCU
retains its efficacy across different erasure coding schemes. In
a nutshell, RackCU can reduce 33.3%, 54.1%, and 60.4% of
the cross-rack update traffic on average compared to CAU, the
baseline, and Parix, respectively.

Experiment A.3 (Impact of Number of Racks): We assess the
impact of the number of racks. We organize the 200 nodes into
four racks (i.e., 50 nodes per rack), five racks (i.e., 40 nodes
per rack), and 10 racks (i.e., 20 nodes per rack), respectively.
Fig. 11 indicates that the amounts of the cross-rack update traffic
incurred by RackCU and CAU both increase with the number
of racks. The rationale is that when a data center comprises

Fig. 11. Experiment A.3 (Impact of number of racks).

Fig. 12. Experiment A.4 (Extension to LRCs).

more racks, each rack is more likely to store fewer chunks of a
stripe, and hence RackCU and CAU have to access more racks
to accomplish the parity update. Besides, the amounts of the
cross-rack update traffic caused by the baseline and Parix stay
constant even when the number of racks varies. The reason is
that we separate the storage of data chunks and parity chunks
across different racks. As the baseline and Parix directly update
each parity chunk in other racks, the cross-rack update traffic
depends on the number of parity chunks.

Experiment A.4 (Extension to LRCs): To demonstrate the gen-
erality, we also evaluate the performance ofRackCUwhen being
deployed atop LRCs. In this experiment, we choose LRC(8,
2, 2), LRC(10, 2, 3) and LRC(12, 2, 4) for evaluation, where
all the three codes are considered in previous work [17]. We
organize 200 nodes in ten racks (i.e., with 20 nodes per rack),
and randomly select a rack to place the local parity chunk without
violating the rack-level fault tolerance guarantee. Fig. 12 shows
that RackCU can still dramatically reduce the cross-rack update
traffic for different LRCs; in particular, it reduces the cross-rack
update traffic by 16.5%, 49.5% and 59.8% compared with CAU,
the baseline and Parix, respectively. Besides, we identify that the
cross-rack update traffic of the baseline and Parix dramatically
increases with the value of the g (i.e., the number of global parity
chunks configured in LRCs), while that of RackCU and CAU

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1881

Fig. 13. Experiment A.5 (Impact of number of nodes per rack).

behaves to be much more stable, since both the baseline and
Parix transmit g parity delta chunks whenever a data chunk is
updated, while RackCU and CAU employ the selective parity
update to reduce the cross-rack update traffic.

Experiment A.5 (Impact of Number of Nodes per Rack): We
then investigate the impact of number of nodes per rack on the
cross-rack update traffic. We fix the number of racks to 10 and
measure the cross-rack update traffic when the number of nodes
per rack is changed from 5 to 20. Fig. 13 shows the results.
We can observe that the cross-rack update traffic of all the four
methods changes marginally under different numbers of nodes
per rack. This is because the change in the number of nodes per
rack actually does not affect the number of racks that a stripe
spans (which is determined by the number of chunks stored
per rack instead), so it does not change the resulting cross-rack
update traffic. We can also observe thatRackCU still achieves the
least cross-rack update traffic; it reduces the cross-rack update
traffic by 38.7%, 69.4% and 77.1% on average compared with
CAU, the baseline and Parix, respectively.

Experiment A.6 (Impact of Rack-Level Fault Tolerance De-
grees): We finally evaluate the cross-rack update traffic under
different rack-level fault tolerance degrees. We select RS(12,4)
and deploy each stripe according to the following conditions to
reach different degrees of rack-level fault tolerance: 1) we place
at most one chunk of a stripe in each rack to tolerate any four
rack failures; 2) we store at most two chunks of a stripe in a rack
to tolerate any double rack failures; and 3) we keep at most four
chunks of a stripe in a rack to tolerate any single rack failure. We
also separate the data and parity chunks of the same stripe into
different racks. We then measure the resulting cross-rack update
traffic and show the results in Fig. 14. We have the following
two observations.

First, RackCU always achieves the least update traffic under
different rack-level fault tolerance degrees. Specifically, it re-
duces the cross-rack update traffic of CAU, the baseline, and
Parix by 52.3%, 65.7%, and 74.3% on average under different
rack-level fault tolerance degrees, respectively.

Second, the cross-rack update traffic of RackCU and CAU
both increases with the rack-level fault tolerance degrees, while

Fig. 14. Experiment A.6 (Impact of rack-level fault tolerance degrees).

those of the baseline and Parix keep unchanged. This is because
for the baseline and Parix, whenever a data chunk is updated,
they always transmitm parity delta chunks (m = 4 in this exper-
iment) to update the corresponding m parity chunks, which are
stored in another dedicated rack (racks). Hence, their cross-rack
update traffic is directly determined by the value ofm, rather than
the number of parity chunks within a rack. On the other hand,
the update approaches selected in RackCU and CAU depend
on the number of parity chunks within a rack, and therefore
their cross-rack update traffic is affected by the number of parity
chunks within a rack.

C. Testbed Experiments

We further assessRackCU on Alibaba Cloud ECS [1] to unveil
its performance in a real-world cloud data center. We set up 18
virtual machine instances with the type of ecs.g6.large.
Each instance is equipped with 2vCPU (2.5GHz Intel Xeon
Platinum 8269CY) and 8 GB memory. The operating system
is Ubuntu 18.04 and the network bandwidth is around 3 Gb/s
(measured by iperf).

Experimental Setup: Among the 18 instances, we deploy the
RackCU coordinator on one instance to serve as the metadata
server, and use anther one to act as the client. We then organize
the remaining 16 instances into eight racks (two instances per
rack) and run both RackCU proxy and agent on each instance.
We choose RS(12,4) (i.e., each rack stores two chunks of a
stripe) and set the chunk size as 4 KB. We use the Linux
tool tc to throttle the cross-rack bandwidth, and evaluate the
update throughput (i.e., the size of data updated per unit time)
by replaying the first 1,000 update requests of each trace.

Experiment B.1 (Impact of Cross-Rack Bandwidth): We mea-
sure the update throughputs by varying the cross-rack band-
width from 50 Mb/s to 200 Mb/s. Fig. 15 indicates that the
update throughput of the four approaches all increase with the
cross-rack bandwidth. The baseline outperforms CAU when the
cross-rack bandwidth is larger than 100 Mb/s as the storage
bandwidth becomes the bottleneck at this time. Overall,RackCU
improves the update throughput by 106.8%, 88.2%, and 262.2%
on average across different cross-rack bandwidth and traces,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



1882 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Fig. 15. Experiment B.1 (Impact of cross-rack bandwidth). The larger value
is better.

Fig. 16. Experiment B.2 (Impact of chunk size with MSR traces).

when compared to CAU, the baseline, and Parix, respectively. In
addition, the update throughput is small (around several MB/s)
as it is restricted by both the cross-rack bandwidth and storage
bandwidth of small accesses.

In addition, the four traces showcase the similar trend due
to the following two reasons. First, we replay the first 1,000
write requests for each trace in testbed experiments. The av-
erage update sizes of the four traces (i.e., src1_0, src2_2,
wdev_3, and rsrch_2) are 10.6 KB, 5.6 KB, 4.4 KB, and
4.3 KB, respectively. Since the chunk size is set from 4 KB to
16 KB, the difference on the number of updated chunks among
the four traces is small (with at most two chunks). Second, we
concern the resulting update throughput, calculated as the ratio
of the size of the updated data chunks and the time duration
of the update process. For a given update approach, its update
throughputs under the four traces are similar, as the larger update
size introduces more cross-rack update traffic and also the longer
update process.

Experiment B.2 (Impact of Chunk Size With MSR Traces): We
study the update throughput under different chunk sizes. Fig. 16
shows that RackCU improves the update throughput by 34.2%,
101.1%, and 292.6% on average across different chunk sizes and

Fig. 17. Experiment B.3 (Impact of chunk size with YCSB workloads).

traces, compared to CAU, the baseline, and Parix, respectively.
Besides, when the chunk size is 16 KB, the efficacy of RackCU
recedes. The major cause is that the average chunk sizes of the
1,000 update requests of the four traces range from 2.9 KB to
10.6 KB. Hence, when the chunk size is 16 KB, each update
request is likely to manipulate only one chunk, hence degrading
the efficacy of RackCU. Hence, we suggest deploying RackCU
in the scenario with multiple chunks updated per update request.

Experiment B.3 (Impact of Chunk Size With YCSB Work-
loads): To demonstrate the generality of RackCU, we also
evaluate the effectiveness ofRackCU for the traces selected from
different repositories. Here, we generate a representative YCSB
workload [10] with 50% of reads and another 50% of writes,
which follow the Zipfian distribution (with the alpha value of
0.99 by default). We then set the object size to 10 MB and
configure the update size as 1 MB. We partition an object into
multiple fixed-size chunks and distribute the chunks uniformly
across racks. We vary the chunk size from 128 KB to 1 MB and
measure the resulting update throughput.

Fig. 17 implies that RackCU outperforms CAU, the baseline,
and Parix under different chunk sizes. Specifically, RackCU
improves the update throughput by 130.4%, 338.6% and 772.0%
on average when compared with CAU, the baseline, and Parix,
respectively. Besides, we also observe that the update throughput
gradually decreases when the chunk size is enlarged, since fewer
data chunks are updated in an update request, which decays the
effectiveness on suppressing the cross-rack update traffic (see
Experiment B.2).

Experiment B.4 (Performance in Geo-Distributed Environ-
ments): We finally investigate the update performance of
RackCU in geo-distributed environments. We deploy RackCU
across eight different geo-distributed regions, namely Hangzhou
(HZ), Shanghai (SH), Qingdao (QD), Beijing (BJ), Hohhot
(HH), Wulanchabu (WL), Shenzhen (SZ), and Heyuan (HY),
where each region comprises two instances with the type of
ecs.g6.large (hence there are 16 instances in total). We
measure via iperf that the average bandwidth of any two dif-
ferent regions is 60.85 Mb/s and the ratio of the intra-region and
the cross-region is 52.6 on average. Table I lists the bandwidths
among the regions (in unit of Mb/s). We deploy RS(12,4) across
the 16 instances (i.e., two chunks per region) and set the chunk
size to 256 KB. We generate three YCSB workloads following
the Zipfian distribution (with the alpha value of 0.99): (i) the
read-heavy workload with 75% of reads and another 25% of
writes; (ii) the read-write-balanced workload with 50% of reads
and another 50% of writes; and (iii) the write-heavy workload

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1883

TABLE I
THE BANDWIDTH AMONG REGIONS (RGS) (UNIT: MB/S)

Fig. 18. Experiment B.4 (Performance in geo-distributed environments).

with 25% of reads and another 75% of writes. We then measure
the update throughputs of the four approaches under the three
different workloads.

Fig. 18 shows that RackCU improves the update throughputs
by 24.9%, 29.5% and 130.1% when compared to CAU, the base-
line, and Parix, respectively. This experiment also demonstrates
that RackCU still preserves its effectiveness on accelerating the
update procedure for the geo-distributed environment.

VI. RELATED WORK

Delta-Based Updates: Erasure-coded systems often manip-
ulate parity update via delta-based update approaches. Parity
logging [39] appends parity deltas to a dedicated log device
for avoiding random small writes. CodFS [6] couples in-place
data update and log-based parity update to tailor update perfor-
mance and repair performance. To avoid frequent disk seeks in
the parity update, Parix [18] appends the old and latest data
chunks, and only calculates the delta of them in the parity
update. UCODR [32] selects the combination of appropriate
data and parity chunks to mitigate the storage I/O in parity
update. T-Update [29] constructs a minimum spanning tree to
guide the prorogation of the parity update. All the above studies
do not consider the reduction of the cross-rack update traffic.
CAU [33] appends new data chunks and defers the parity update
to reduce the cross-rack update traffic, at the cost of system
reliability degradation. Compared to CAU, RackCU achieves
higher reliability by immediately updating parity chunks and
theoretically minimizes the cross-rack update traffic.

Data Placement: Some studies utilize access characteristics
to mitigate the parity update. PDP [36] arranges sequential data
chunks to generate the same parity chunk for reducing the parity
update of sequential writes. CASO [34] organizes correlated

data chunks that are likely to be updated together into the same
stripe. CAU [33] relocates updated data chunks within the same
rack to reduce cross-rack traffic in the parity update. RackCU
is orthogonal and complementary to these studies for further
mitigating the cross-rack update traffic.

Rack-Aware Operations: Previous studies also notice the
scarcity of cross-rack bandwidth in some system operations.
LRCs [16], [28] keep a local parity chunk within a rack to avoid
cross-rack data transfers in single chunk’s repair. Some studies
[15], [20], [21], [23], [37], [38] decompose a chunk’s repair
into many sub-stages that are performed within racks in parallel,
such that the cross-rack repair traffic can be reduced. In addition,
some studies [19], [41] consider the rack-aware transition. As a
comparison, our RackCU pays close attention to the reduction
of the cross-rack update traffic in data centers.

VII. CONCLUSION

We study how to reduce cross-rack update traffic in erasure-
coded data centers. We propose a rack-coordinated update mech-
anism that comprises two phases: (i) a delta-collecting phase
that carefully chooses collector racks for retrieving data delta
chunks, and (ii) another selective parity update phase that renews
the parity chunks through selecting the appropriate parity update
approach. We then designRackCU, an optimal rack-coordinated
update solution that minimizes the cross-rack update traffic. We
finally conduct in-depth reliability analysis, large-scale simula-
tion, and extensive testbed experiments, showing that RackCU
can vastly reduce the cross-rack update traffic and improve the
update throughput, hence gaining higher data reliability.

ACKNOWLEDGMENTS

A preliminary version [13] of this article was presented at the
IEEE International Conference on Computer Communications
(INFOCOM’21). In this version, we further extend RackCU for
LRCs, analyzeRackCU on the data reliability, and uncover more
experimental findings.

REFERENCES

[1] Alibaba Cloud Elastic Compute Service. [Online]. Available: https://www.
alibabacloud.com/product/ecs

[2] Erasure Coding in Ceph, 2016. [Online]. Available: https://docs.ceph.com/
en/latest/rados/operations/erasure-code

[3] Locally Repairable Codes in Ceph, 2016. [Online]. Available: https://docs.
ceph.com/en/latest/rados/operations/erasure-code-lrc

[4] Apache Hadoop 3.0.0, 2017. [Online]. Available: https://hadoop.apache.
org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.
html

[5] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar, “Shuffle-
Watcher: Shuffle-aware scheduling in multi-tenant MapReduce clusters,”
in Proc. USENIX Annu. Tech. Conf., 2014, pp. 1–12.

[6] J. Chan, Q. Ding, P. Lee, and H. Chan, “Parity logging with reserved
space: Towards efficient updates and recovery in erasure-coded clustered
storage,” in Proc. USENIX Conf. File Storage Technol., 2014, pp. 163–176.

[7] H. Chen et al., “Efficient and available in-memory KV-store with hybrid
erasure coding and replication,” ACM Trans. Storage, vol. 13, no. 3,
pp. 1–30, 2017.

[8] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint flexi-
bility in data-intensive clusters,” in Proc. ACM SIGCOMM Conf., 2013,
pp. 231–242.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 

https://www.alibabacloud.com/product/ecs
https://www.alibabacloud.com/product/ecs
https://docs.ceph.com/en/latest/rados/operations/erasure-code
https://docs.ceph.com/en/latest/rados/operations/erasure-code
https://docs.ceph.com/en/latest/rados/operations/erasure-code-lrc
https://docs.ceph.com/en/latest/rados/operations/erasure-code-lrc
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html


1884 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

[9] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer, “Tiered
replication: A cost-effective alternative to full cluster geo-replication,” in
Proc. USENIX Annu. Tech. Conf., 2015, pp. 31–43.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. ACM Symp.
Cloud Comput., 2010, pp. 143–154.

[11] D. Ford et al., “Availability in globally distributed storage systems,”
in Proc. USENIX Conf. Operating Syst. Des. Implementation, 2010,
pp. 61–74.

[12] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in Proc. ACM
SIGCOMM Conf., 2011, pp. 350–361.

[13] G. Gong, Z. Shen, S. Wu, X. Li, and P. P. C. Lee, “Optimal rack-coordinated
updates in erasure-coded data centers,” in Proc. IEEE Conf. Comput.
Commun., 2021, pp. 1–10.

[14] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM Conf. Data Commun., 2009, pp. 51–62.

[15] Y. Hu et al., “Optimal repair layering for erasure-coded data centers: From
theory to practice,” ACM Trans. Storage, vol. 13, no. 4, 2017, Art. no. 33.

[16] C. Huang et al., “Erasure coding in windows Azure storage,” in Proc.
USENIX Annu. Tech. Conf., 2012, Art. no. 2.

[17] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg, “On fault
tolerance, locality, and optimality in locally repairable codes,” ACM Trans.
Storage, vol. 16, no. 2, pp. 1–32, 2020.

[18] H. Li et al., “PARIX: Speculative partial writes in erasure-coded systems,”
in Proc. USENIX Annu. Tech. Conf., 2017, pp. 581–587.

[19] R. Li, Y. Hu, and P. P. C. Lee, “Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 9, pp. 2500–2513, Sep. 2017.

[20] R. Li, X. Li, P. P. C. Lee, and Q. Huang, “Repair pipelining for erasure-
coded storage,” in Proc. USENIX Annu. Tech. Conf., 2017, pp. 567–579.

[21] X. Li, R. Li, P. P. C. Lee, and Y. Hu, “OpenEC: Toward unified and
configurable erasure coding management in distributed storage systems,”
in Proc. USENIX Conf. File Storage Technol., 2019, pp. 331–344.

[22] V. Liu, D. Zhuo, S. Peter, A. Krishnamurthy, and T. Anderson, “Subways:
A case for redundant, inexpensive data center edge links,” in Proc. ACM
Conf. Emerg. Netw. Experiments Technol., 2015, pp. 27:1–27:13.

[23] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair (PPR):
A distributed technique for repairing erasure coded storage,” in Proc. Eur.
Conf. Comput. Syst., 2016, Art. no. 30.

[24] S. Muralidhar et al., “f4: Facebook’s warm BLOB storage system,” in Proc.
USENIX Conf. Operating Syst. Des. Implementation, 2014, pp. 383–398.

[25] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading: Practical
power management for enterprise storage,” ACM Trans. Storage, vol. 4,
no. 3, pp. 1–23, 2008.

[26] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum,
“Fast crash recovery in RAMCloud,” in Proc. ACM Symp. Operating Syst.
Princ., 2011, pp. 29–41.

[27] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The
quantcast file system,” Proc. VLDB Endowment, vol. 6, no. 11, pp. 1092–
1101, 2013.

[28] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[29] X. Pei, Y. Wang, X. Ma, and F. Xu, “T-update: A tree-structured update
scheme with top-down transmission in erasure-coded systems,” in Proc.
IEEE 35th Annu. Int. Conf. Comput. Commun., 2016, pp. 1–9.

[30] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
C/C++ facilitating erasure coding for storage applications-version 1.2,”
Univ. Tennessee, Knoxville, TN, USA, Tech. Rep. CS-08–627, vol. 23,
2008.

[31] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J.
Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[32] J. Shen, K. Zhang, J. Gu, Y. Zhou, and X. Wang, “Efficient scheduling
for multi-block updates in erasure coding based storage systems,” IEEE
Trans. Comput., vol. 67, no. 4, pp. 573–581, Apr. 2018.

[33] Z. Shen and P. Lee, “Cross-rack-aware updates in erasure-coded data
centers,” in Proc. Int. Conf. Parallel Process., 2018, pp. 1–10.

[34] Z. Shen, P. Lee, J. Shu, and W. Guo, “Correlation-aware stripe organization
for efficient writes in erasure-coded storage systems,” in Proc. IEEE 36th
Symp. Reliable Distrib. Syst., 2017, pp. 134–143.

[35] Z. Shen, S. Lin, J. Shu, C. Xie, Z. Huang, and Y. Fu, “Cluster-aware
scattered repair in erasure-coded storage: Design and analysis,” IEEE
Trans. Comput., vol. 70, no. 11, pp. 1861–1874, Nov. 2021.

[36] Z. Shen, J. Shu, and Y. Fu, “Parity-switched data placement: Optimizing
partial stripe writes in XOR-coded storage systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 11, pp. 3311–3322, Nov. 2016.

[37] Z. Shen, J. Shu, Z. Huang, and Y. Fu, “ClusterSR: Cluster-aware scattered
repair in erasure-coded storage,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2020, pp. 42–51.

[38] Z. Shen, J. Shu, and P. P. C. Lee, “Reconsidering single failure recovery
in clustered file systems,” in Proc. IEEE/IFIP 46th Annu. Int. Conf.
Dependable Syst. Netw., 2016, pp. 323–334.

[39] D. Stodolsky, G. Gibson, and M. Holland, “Parity logging overcoming the
small write problem in redundant disk arrays,” ACM SIGARCH Comput.
Archit. News, vol. 21, no. 2, pp. 64–75, 1993.

[40] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in Proc. Int. Workshop Peer-to-Peer Syst.,
2002, pp. 328–338.

[41] S. Wei, Y. Li, Y. Xu, and S. Wu, “DSC: Dynamic stripe construction
for asynchronous encoding in clustered file system,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[42] S. Wu, Q. Du, P. P. C. Lee, Y. Li, and Y. Xu, “Optimal data placement for
stripe merging in locally repairable codes,” in Proc. IEEE Conf. Comput.
Commun., 2022, pp. 1669–1678.

Guowen Gong received the BS degree from Xia-
men University, in 2020. He is currently working
toward the master degree with Xiamen University
majoring in computer science and technology. His
current research interests include storage reliability
and security.

Zhirong Shen (Member, IEEE) received the BS de-
gree from the University of Electronic Science and
Technology of China, in 2010, and the PhD degree in
computer science from Tsinghua University, in 2016.
He is now an associate professor with Xiamen Uni-
versity. His current research interests include storage
reliability and storage security.

Liang Chen received the BS degree from Xiamen
University, in 2021. He is currently working toward
the master degree with Xiamen University majoring
in computer science and technology. His current re-
search interests include programmable networks and
storage reliability.

Suzhen Wu (Member, IEEE) received the BE and
PhD degrees in computer science and technology
and computer architecture from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2005 and 2010, respectively. She is an associate
professor of Computer Science Department, Xiamen
University. Her research interests include computer
architecture and storage system. She has more than
40 publications in journal and international confer-
ences, including the IEEE Transactions on Comput-
ers, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on Parallel and Distributed
Systems, ACM Transactions on Storage, USENIX FAST, USENIX LISA, ICS,
ICDCS, ICCD, MSST, DATE, and IPDPS.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: OPTIMAL RACK-COORDINATED UPDATES IN ERASURE-CODED DATA CENTERS: DESIGN AND ANALYSIS 1885

Xiaolu Li received the BEng degree from the Univer-
sity of Science and Technology of China, in 2016, and
the PhD degree in computer science and engineering
from the Chinese University of Hong Kong, in 2020.
She is now a lecturer with the School of Computer Sci-
ence and Technology, Huazhong University of Sci-
ence and Technology. Her current research interests
include distributed storage system, erasure-coding,
and container storage.

Patrick P. C. Lee (Senior Member, IEEE) received
the BEng (first-class honors) degree in information
engineering from the Chinese University of Hong
Kong, in 2001, the MPhil degree in computer science
and engineering from the Chinese University of Hong
Kong, in 2003, and the PhD degree in computer
science from Columbia University, in 2008. He is
now a full professor with the Department of Com-
puter Science and Engineering, Chinese University
of Hong Kong. His research interests include vari-
ous applied/systems topics including storage systems,

distributed systems and networks, dependability, and security.

Zhiguo Wan received the BS degree in computer
science from Tsinghua University, in 2002, and the
PhD degree in information security from the National
University of Singapore, in 2007. He is a princi-
pal investigator with the Zhejiang Lab, Hangzhou,
Zhejiang, China. His main research interests include
security and privacy for cloud computing, Internet-
of-Things, and blockchain. He was a postdoc with
Katholieke University of Leuven, Belgium and an
Assistant Professor with the School of Software, Ts-
inghua University, Beijing, China.

Jiwu Shu (Fellow, IEEE) received the PhD degree in
computer science from Nanjing University, in 1998,
and finished the postdoctoral position research with
Tsinghua University, in 2000. Since then, he has
been teaching with Tsinghua University. His current
research interests include storage security and reli-
ability, non-volatile memory based storage systems,
and parallel and distributed computing.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 24,2024 at 01:27:41 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


