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Repair performance in hierarchical data centers is often bottlenecked by cross-rack network transfer. Recent

theoretical results show that the cross-rack repair traffic can be minimized through repair layering, whose

idea is to partition a repair operation into inner-rack and cross-rack layers. However, how repair layering

should be implemented and deployed in practice remains an open issue. In this article, we address this issue

by proposing a practical repair layering framework called DoubleR. We design two families of practical double

regenerating codes (DRC), which not only minimize the cross-rack repair traffic but also have several prac-

tical properties that improve state-of-the-art regenerating codes. We implement and deploy DoubleR atop

the Hadoop Distributed File System (HDFS) and show that DoubleR maintains the theoretical guarantees of

DRC and improves the repair performance of regenerating codes in both node recovery and degraded read

operations.
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1 INTRODUCTION

As data center storage expands at scale, failures are more prevalent in storage subsystems [16,
27, 45]. To maintain data availability and durability at low cost, modern data centers increasingly
adopt erasure coding to protect data storage with a significantly low degree of redundancy while
still preserving the same fault tolerance as traditional replication. At a high level, an erasure code
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works by transforming a set of uncoded fixed-size units, called blocks, into a larger set of coded
blocks such that the set of uncoded blocks can be reconstructed from any subset of the same
number of coded blocks. Each set of coded blocks is called a stripe, and a data center stores multiple
stripes that are independently erasure coded. By distributing the coded blocks (or blocks in short)
of each stripe across distinct storage nodes, a data center can provide fault tolerance against node
failures. Field studies have shown the benefits of erasure coding in saving storage overhead in
production. For example, Azure [25] and Facebook [33] reportedly reduce storage redundancy to
1.33× and 1.4×, respectively, as opposed to 3× in traditional triple replication [8, 18].

A drawback of erasure coding is the high repair cost. Repair operations are triggered when
issuing degraded reads to unavailable blocks or recovering lost blocks from node crashes. In both
cases, repairing each failed block in erasure-coded storage must retrieve multiple available blocks
from other nodes for reconstruction. This leads to substantial repair traffic, defined as the amount
of data transferred for repair. Facebook [39] reports that its erasure-coded data center generates
a median size of 180TB of repair traffic per day, which in turn limits the bandwidth resources
available for foreground jobs. In practice, bandwidth resources available for repair tasks are often
throttled [25, 50] to limit their adverse impact on other application traffic. Thus, there has been an
extensive literature on mitigating the repair cost (see Section 7). In particular, regenerating codes

[15] are a special class of erasure codes that provably minimize the repair traffic, and there are
many follow-up theoretical studies on regenerating codes. In addition, recent studies (e.g., Chen et
al. [9], Li et al. [31], Pamies-Juarez et al. [35], and Rashmi et al. [38]) have prototyped regenerating
codes and evaluated their practical performance in networked environments.

However, regenerating codes are still limited in addressing the hierarchical nature of data cen-
ters. Modern data centers organize nodes in racks and are oversubscribed to control operational
costs [13]. Although full-bisection bandwidth is available within a rack, cross-rack bandwidth is
constrained. Typical oversubscription ratios range from 5:1 to 20:1 [5, 6, 54] (i.e., the available
cross-rack bandwidth per node is only 1/5 to 1/20 of the inner-rack bandwidth in the worst case);
in some extremes, the ratio could reach 240:1 [22]. Cross-rack links are also shared by replica
writes [11] or shuffle/join traffic of computing jobs [5, 26]. Note that geodistributed data centers
[4, 16] also exhibit the similar hierarchical nature, as the bandwidth resources across geographical
regions are limited [4] and intermittently congested [10] as opposed to within the same region.

To maximize fault tolerance, existing erasure-coded data centers often place each block of a
stripe in a distinct node that resides in a distinct rack (i.e., one block per rack) [16, 25, 33, 38, 40,
44]. We call this flat block placement, which allows a data center to tolerate the same numbers
of node failures and rack failures. However, this inevitably makes the repair of any failed block
retrieve available blocks from other racks and hence incurs substantial cross-rack repair traffic,
even though the repair traffic can be minimized by regenerating codes.

In this article, we propose DoubleR, a repair framework that is designed to minimize the cross-
rack repair traffic for hierarchical data centers. DoubleR advocates a concept called repair layering,
which splits a repair operation into inner-rack and cross-rack layers and trades (abundant) inner-
rack bandwidth for (constrained) cross-rack bandwidth. Specifically, DoubleR opts for hierarchical

block placement, which places multiple blocks of a stripe per rack, to minimize the cross-rack
repair traffic at the expense of reducing rack-level fault tolerance. To repair a failed block, one
selected node in each rack can perform partial repair operations internally using the available
blocks from the same rack. It then sends partially repaired results across racks to a destination
node, which combines the partially repaired results from multiple racks to reconstruct the failed
block. Through repair layering, it is theoretically proven that the cross-rack repair traffic can be
minimized through a new class of regenerating codes called double regenerating codes (DRC) [24].
We augment the theoretical results in Hu et al. [24] into the repair framework DoubleR and make
the following contributions from an applied perspective:
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—We provide numerical analysis to show that repair layering significantly reduces the cross-
rack repair traffic compared to state-of-the-art regenerating codes. We also provide reliabil-
ity analysis to study the trade-off between the minimized cross-rack repair traffic and the
reduced rack-level fault tolerance. Although similar numerical and reliability analysis on
erasure-coded storage has been found in the literature (e.g., Huang et al. [25], Li et al. [31],
and Sathiamoorthy et al. [31]), our analysis is new by specifically addressing the hierarchi-
cal nature of data centers.

—We propose two families of constructions of DRC. Both constructions preserve the theoret-
ical guarantees of minimizing the cross-rack repair traffic and are specifically designed for
the practical deployment in real-world data centers.

—We implement a DoubleR prototype atop Facebook’s Hadoop Distributed File System
(HDFS) [1]. We extensively parallelize the operations to mitigate repair overhead. We also
export APIs that can incorporate not only DRC but also existing regenerating codes.

—We conduct testbed experiments on evaluating different erasure codes using our DoubleR
prototype. We show that DRC increases the single failed node recovery throughput and
reduces the degraded read time to an unavailable block. Our results also conform to the
numerical results of bandwidth savings of DRC.

The remainder of the article proceeds as follows. In Section 2, we introduce and motivate the
design of DoubleR. In Section 3, we present analytical results on DRC. In Section 4, we propose two
practical constructions of DRC. In Section 5, we describe the implementation details of DoubleR.
In Section 6, we present experimental results. In Section 7, we review related work. In Section
8, we provide a detailed discussion on the design trade-offs of DRC, and finally in Section 9, we
conclude the article.

2 DOUBLER OVERVIEW

2.1 Motivation

Practical data centers are susceptible to both independent and correlated node failures [12, 16]:
independent node failures mean that each node fails independently due to individual events (e.g.,
disk/node crashes), whereas correlated node failures mean that multiple nodes fail simultaneously
due to a common disastrous event (e.g., power outages or common switch failures). In practice,
racks are treated as the major failure domains in which correlated node failures are likely to occur.
To deploy erasure coding in data centers, existing approaches mostly adopt flat block placement
by placing each block of a stripe in a distinct rack [16, 25, 33, 38, 40, 44]. This tolerates the same
numbers of node failures and rack failures, and provides the maximum fault tolerance against both
independent and correlated node failures.

Our rationale is that rack failures are much less common than node failures in practice [16, 33],
so it is viable to tolerate fewer rack failures than node failures. Thus, instead of adopting flat block
placement, we opt for hierarchical block placement and place multiple blocks in the same rack
to minimize the cross-rack repair traffic at the expense of reduced rack-level fault tolerance (note
that each block is still stored in a distinct node for the same node-level fault tolerance). Given
the constrained bandwidth resources for cross-rack links (see Section 1), minimizing the cross-
rack repair traffic allows fast repair, thereby reducing the downtime of unavailable blocks (i.e.,
improved availability) and the window of vulnerability (i.e., improved durability).

In fact, the use of hierarchical block placement is also found in existing production storage
systems to mitigate the cross-rack transfer overhead. For example, HDFS [49], which is replication
based, by default places two replicas in one rack and one replica in a different rack. Quantcast File
System (QFS) [34], which supports erasure coding, provides an option called in-rack placement to
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Fig. 1. Repair in DoubleR.

place multiple blocks in the same rack. An open issue is how to exploit the property of hierarchical
block placement to minimize the cross-rack repair traffic in erasure-coded storage, and this is the
key motivation of this work.

2.2 DoubleR Architecture

Given that multiple blocks are available in a rack, DoubleR exploits a two-layer repair approach by
first repairing as much failed data as possible within each rack and then combining the partially
repaired results from multiple racks to repair all failed data. To achieve bandwidth savings, Dou-
bleR follows regenerating codes [15] by partitioning a block into smaller subblocks and allowing
each node to compute encoded subblocks from its stored block during a repair operation. DoubleR
takes one step further by re-encoding the encoded subblocks from all nodes in the same rack to
achieve additional bandwidth savings across racks beyond regenerating codes.

Figure 1 illustrates the repair workflow in DoubleR. Specifically, we consider a hierarchical data
center that is composed of multiple racks, each of which contains multiple storage nodes. Multiple
nodes within the same rack are connected by a top-of-rack switch, whereas multiple racks are
connected by an abstraction of switches called network core [11]. Repairing a failed block is done
by retrieving available blocks from other nodes that reside in the same rack (called local rack)
and different racks (called nonlocal racks). DoubleR selects one target node in the local rack to
be responsible for reconstructing the failed block. It also selects one relayer node in each nonlocal
rack to aggregate and forward the repaired results in that rack; typically, a relayer should be one of
the nodes that locally stores an available block for the repair to save inner-rack network transfer.
In each nonlocal rack, each node sends encoded subblocks to the relayer, which re-encodes the
encoded subblocks. Multiple relayers then send the re-encoded subblocks across racks to the target,
which reconstructs the failed block. In the deployment of DoubleR, we assign different relayers
and targets for repairing multiple failed blocks (e.g., when recovering all lost data of a failed node)
to harness parallelism (see Section 5).

DoubleR builds on the notion called repair layering, which decomposes a repair operation into
different layers (nodes and racks in our case) along the hierarchy of a data center. By doing so, we
can effectively mitigate the critical resource overhead (i.e., cross-rack repair traffic).

3 DOUBLE REGENERATING CODES

DoubleR builds on DRC [24] to realize repair layering. In this section, we define the notation
and terminologies of erasure coding in the context of data centers and summarize the theoretical
findings of DRC. We identify the connections between DRC and regenerating codes for special
cases. We further compare DRC with existing erasure codes for more general cases through the
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numerical analysis of bandwidth savings and the reliability modeling of mean time to data loss
(MTTDL).

3.1 Background

We elaborate the background of erasure coding based on our discussion in Section 1. As multiple
stripes are independently erasure coded, our discussion focuses on a single stripe. Specifically, we
construct an erasure code, denoted by an (n,k, r ) code, with three configurable parameters n, k
(where k < n), and r (where r ≤ n). For each stripe, we encode k original uncoded blocks of size B
each into n coded blocks of the same size. For node-level fault tolerance, we distribute the coded
blocks (or blocks in short) across n nodes (i.e., one block per node) that evenly reside in r racks
withn/r nodes each. Here, we assume thatn/r is an integer. For flat block placement, which is used
by most erasure coding deployments, we have r = n, whereas our work addresses r ≤ n. Unlike
previous studies that typically construct an erasure code by two parameters n and k only, our work
introduces the parameter r to take into account rack-level fault tolerance.

We focus on erasure codes that are maximum distance separable (MDS), meaning that any k out
of n blocks suffice to reconstruct original uncoded data. MDS codes are storage optimal, meaning
that they minimize storage redundancy (i.e., n/k times the original data size). Examples of MDS
codes include Reed-Solomon (RS) codes [42], which have been widely deployed in production
storage systems [2, 16, 33, 34], as well as minimum storage regenerating (MSR) codes [15], which
minimize the repair traffic subject to the minimum storage redundancy. In this article, when we
perform comparisons with regenerating codes on repair performance, we focus on MSR codes.
Note that some non-MDS codes are also proposed to mitigate the repair traffic at the expense of
higher storage redundancy. Examples include minimum bandwidth regenerating (MBR) codes [15]
and locally repairable codes [25, 44].

In addition, we focus on systematic codes, meaning that k out of n coded blocks are in original
uncoded form. As opposed to nonsystematic codes (i.e., all blocks are in coded form), systematic
codes allow a storage system to directly access data without decoding. We refer to the k uncoded
blocks as data blocks, whereas the remaining n − k coded blocks are referred to as parity blocks.
For brevity, if the context is clear, we simply refer to both data and parity blocks as blocks.

Repair. As in previous studies [15, 25, 28, 38, 40], this article focuses on optimizing the single-
failure repair, which refers to either repairing a single unavailable block of a stripe in a degraded
read operation or repairing all blocks of multiple stripes in a single node (i.e., one block per stripe)
in a node recovery operation. Single-failure repair is the most common repair scenario in practice
[25, 39]. Suppose that the target repairs a single failed block. In classical RS codes [42], the target
retrieves k blocks from k available nodes. Thus, the repair traffic of RS codes per failed block (of
size B) is

B · k . (1)

MSR codes [15] minimize the repair traffic while achieving the same minimum storage redun-
dancy as RS codes (i.e., MDS). To repair a single failed block, each of the n − 1 available nodes
can partition a block into n − k subblocks and send an encoded subblock of size B/(n − k ) to the
target.1 The repair traffic of MSR codes per failed block [15] (which is provably minimum) is

B · n − 1

n − k .
(2)

1MSR codes allows fewer than n − 1 available nodes to send encoded information for repair, at the expense of higher repair

traffic.

ACM Transactions on Storage, Vol. 13, No. 4, Article 33. Publication date: November 2017.



33:6 Y. Hu et al.

For data centers, our objective is to minimize the cross-rack repair traffic, which is the major
bottleneck in a data center (see Section 1). Since each rack stores n/r blocks, this work mainly
addresses the case where (1) n/r ≤ k and (2) n/r ≤ n − k . Case (1) states that each rack has at most
k blocks, implying that repairing a failed block must retrieve at least one available block across
racks. Case (2) states that each rack has at most n − k blocks, implying that a single rack failure
does not introduce data loss; in other words, a data center can tolerate at least a single rack failure.
DRC [24] is shown to achieve the minimum cross-rack repair traffic per failed block, given by:

B · r − 1

r − �kr/n� . (3)

If we distribute blocks across r = n racks as in flat block placement, Equation (3) reduces to the
minimum repair traffic of MSR codes in Equation (2).

Connections with regenerating codes. We point out that the minimum cross-rack repair traffic in
Equation (3) can be achieved by MSR codes for specific settings of parameters, as shown in the
following theorem.

Theorem 3.1. MSR codes can achieve the minimum cross-rack repair traffic for general n and k
with r = n

n−k
, assuming that n is divisible by n − k (i.e., r is an integer).

Proof. We deploy MSR codes following hierarchical block placement by setting r = n
n−k

, so each
rack has n − k blocks in n − k different nodes. To repair a failed block, the target retrieves n − k − 1
encoded subblocks from its local rack and (r − 1) (n − k ) encoded subblocks from nonlocal racks.
Since each encoded subblock has size B

n−k
, the cross-rack repair traffic of MSR codes is (r − 1) (n −

k ) · B
n−k
= (r − 1)B.

Given that r = n
n−k

, we can show that k = n − n
r

and hence � kr
n
� = � (n−n/r )r

n
� = r − 1. Thus, we

can express the minimum cross-rack repair traffic in Equation (3) as B · r−1
r−(r−1) = (r − 1)B. In other

words, the cross-rack repair traffic of MSR codes is in fact the minimum. �

3.2 Examples

Based on Equation (3), we provide examples to motivate how DRC reduces the cross-rack repair
traffic over MSR codes. Here, we fix n = 6 and k = 3 in our examples.

Suppose that we deploy MSR codes using flat block placement. We set (n,k, r ) = (6, 3, 6) and
denote the code by MSR(6,3,6). Figure 2(a) shows the block placement of MSR(6,3,6). To repair a
failed block, each node in a distinct rack partitions its stored block into n − k = 3 subblocks and
sends one encoded subblock of size B

n−k
= B/3 [15]. From Equation (3), the cross-rack repair traffic

of MSR(6,3,6) is 5B/3.
Clearly, we can also deploy regenerating codes using hierarchical block placement. We set

(n,k, r ) = (6, 3, 3) by placing two blocks per rack and denote the code by MSR(6,3,3). Figure 2(b)
shows how MSR(6,3,3) repairs a failed block. We see that the target can retrieve one encoded sub-
block from the local rack, whereas it still needs to retrieve four encoded subblocks from nonlocal
racks. Thus, the cross-rack repair traffic of RC(6,3,3) is reduced to 4B/3.

DRC takes advantage of hierarchical block placement by re-encoding the encoded subblocks
in the relayer of each rack. We again set (n,k, r ) = (6, 3, 3) and denote the code by DRC(6,3,3).
Figure 2(c) shows how DRC(6,3,3) repairs a failed block. From Equation (3), the cross-rack repair
traffic of DRC(6,3,3) is further reduced to B.

3.3 Numerical Analysis

We present numerical results to demonstrate the benefits of DRC in minimizing the cross-rack
repair traffic for different cases of (n,k, r ). We consider the following erasure codes:
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Fig. 2. Motivating examples.

Fig. 3. Numerical results of cross-rack repair traffic (in blocks) for repairing a failed block under different

erasure code configurations, grouped by the same n − k .

—RS: To repair a failed block in RS codes [42], the target retrieves k available blocks. If r < n
(i.e., hierarchical block placement), we assume that the target first retrievesn/r − 1 available
blocks from the local rack, followed by retrieving the remaining k − (n/r − 1) blocks from
nonlocal racks, to make the cross-rack repair traffic as low as possible for RS codes. We use
RS codes as the baseline.

—MSR: We consider two parameter settings whose systematic MSR code constructions have
been proposed in the literature: (1) n − k = 2 [35, 52] and (2) n = 2k [38, 41, 47]. Note that
for n − k = 2 and r = n/2, MSR codes achieve the same cross-rack repair traffic as DRC (see
Theorem 3.1). We include them for completeness.

—DRC: We consider two parameter settings: (1) general (n,k ) with r = n/(n − k ) and (2)
(n,k, r ) = (3z, 2z − 1, 3) for z ≥ 2. In Section 4, we provide code constructions for both set-
tings.

Figure 3 shows the numerical results of cross-rack repair traffic (in units of blocks) for repairing
a failed block under different configurations of erasure codes, which we group by the same n − k
(i.e., the same number of node failures that can be tolerated). We make the following observations:

—As expected, there is a storage-bandwidth trade-off. For a given code with the same n − k ,
the cross-rack repair traffic increases when the storage redundancy (i.e., n/k) decreases. For
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Fig. 4. Markov models for flat block placement and hierarchical block placement.

example, RS(8,6,8) has 11.3% less storage redundancy than RS(6,4,6) but 50% higher cross-
rack repair traffic.

—For a given code and the same n and k , hierarchical block placement reduces the cross-rack
repair traffic over flat block placement at the expense of reduced rack-level fault tolerance.
For example, RS(6,4,3) incurs 25% less cross-rack repair traffic than RS(6,4,6); MSR(6,4,3)
incurs 20% less cross-rack repair traffic than MSR(6,4,6).

—For the same (n,k, r ), DRC incurs less cross-rack repair traffic than RS codes. The percentage
reduction increases with n − k . For example, DRC(9,5,3) incurs 66.7% less cross-rack repair
traffic than RS(9,5,3).

—For n − k ≥ 3, DRC incurs not only less cross-rack repair traffic but also less storage redun-
dancy than MSR codes. For example, DRC(9,5,3) incurs 33.3% less cross-rack repair traffic
and 20% less storage redundancy than MSR(8,4,4).

3.4 Reliability Analysis

Recall that DRC leverages hierarchical block placement to trade rack-level fault tolerance for the
minimum cross-rack repair traffic. We now study the reliability trade-off of DRC due to hierarchical
block placement. Here, we analyze the MTTDL metric via the standard Markov modeling, as used
by many previous studies (e.g., Cidon [12], Ford et al. [16], Huang et al. [25], Sathiamoorthy et al.
[44], and Silberstein [50]). Although the effectiveness of Markov-based reliability analysis is debat-
able [21], we believe that it suffices for providing preliminary insights on reliability for this work.

Model. In our analysis, we fix n = 9 and k = 6 (which are also used by QFS [34]). Figure 4 shows
the Markov models for flat block placement with (n,k, r ) = (9, 6, 9) and hierarchical block place-
ment with (n,k, r ) = (9, 6, 3) (in Section 4.2, we provide a DRC construction for (9, 6, 3)). Suppose
that we distribute blocks of multiple stripes across n nodes. Each state represents the number of
available nodes—for instance, State 9 means that all nodes are healthy, whereas State 5 implies data
loss. We assume that interfailure and interrepair times are exponentially distributed.

We model both independent and correlated node failures (see Section 2.1). For independent node
failures, let λ1 be the independent failure rate of each node. The state transition rate from State i
to State i − 1, where 6 ≤ i ≤ 9, is iλ1, since any of the i nodes in State i fail independently. For
correlated node failures, we consider the scenario where each rack (the largest failure domain in
our case) experiences a power outage that brings down a fixed fraction of nodes simultaneously
[12, 49]. In our modeling, we assume that each node fails with a probability that is equal to the
fraction of nodes being brought down by a power outage. Let λ2 be the failure rate of each node
due to correlated node failures. We assume that correlated node failures are rare and only occur
when all nodes are healthy (i.e., State 9); in other words, a data center operating in degraded mode
is only subject to independent node failures. This assumption also simplifies our analysis. Thus,
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Table 1. MTTDLs of Flat Block Placement and Hierarchical Block Placement for Different

Values of 1/λ1 (Years) and γ1 = 1 Gb/s

1/λ1 (years) 2 4 6 8 10
Flat, without correlated 2.56E+06 4.08E+07 2.06E+08 6.52E+08 1.59E+09
Flat, with correlated 2.54E+06 4.00E+07 2.00E+08 6.27E+08 1.51E+09
Hierarchical, without correlated 3.41E+06 5.44E+07 2.75E+08 8.69E+08 2.12E+09
Hierarchical, with correlated 3.28E+06 4.69E+07 1.96E+08 4.81E+08 8.80E+08

for flat block placement (see Figure 4(a)), the state transition rate from State 9 to State 8 adds 9λ2, as
each node residing in a distinct rack can fail due to correlated node failures. For hierarchical block
placement (see Figure 4(b)), there are three cases: (1) from State 9 to State 8, the state transition
rate adds 3 · (3λ2) = 9λ2, as a node failure can occur in any one of three nodes in any one of the
three racks; (2) from State 9 to State 7, the state transition rate is 3 · (3λ2

2) = 9λ2
2, since a two-node

failure can occur in any two of three nodes in any one of the three racks; and (3) from State 9 to
State 6, the state transition rate is 3λ3

2 since a three-node failure can occur in any one of the three
racks.

To model repair, we assume that the repair times are proportional to the amount of repair traffic.
When there is only one single failed node, let μf and μh be the repair rates of a failed node from
State 8 to State 9 in flat block placement and hierarchical block placement, respectively. When there
are multiple failed nodes, we assume that we repair one node at a time (similar to the analysis in
Huang et al. [25] and Sathiamoorthy et al. [44]) and the repair is done by retrieving the size of
original data in both placement schemes, and let μ ′ be the repair rate for each node from State i to
State i + 1, where 6 ≤ i ≤ 8.

We can configure the parameters as follows. For λ1, we assume that the mean time to failure
(MTTF) of a node is in the range of a few years [45] (e.g., 1/λ1 = 4 years [44]). For λ2, we follow
the assumption that a power outage occurs once a year and 0.5% to 1% of nodes fail after a power
outage [49]; in this case, the MTTF of a node due to a power outage is 0.5% ≤ λ2 ≤ 1% (per year).
For repair, let γ be the available cross-rack bandwidth, S be the storage capacity of a node, and C
be the repair traffic per unit of repaired data. For example, for a single-node repair in flat block
placement, C = 8/3 if MSR codes are used (see Equation (2)), so μf = γ/(8S/3). For a single-node
repair in hierarchical block placement, C = 2 if DRC is used (see Equation (3)), so μh = γ/(2S ).
When there are multiple failed nodes, each failed node is repaired from the available blocks of any
k nodes (i.e., the MDS property), so C = k = 6 and μ ′ = γ/(6S ).

Analysis. We now evaluate the MTTDLs of both block placement schemes. We consider the sce-
narios with (1) independent node failures only (i.e., λ2 = 0) and (2) both independent and correlated
node failures, in which we set λ2 = 0.5% (per year). We also fix S = 1TiB.

We show the MTTDL results for two parameter settings: (1) we fix γ = 1Gb/s [44] and vary 1/λ1

from 2 to 10 years (see Table 1), and (2) we fix 1/λ1 = 4 years [44] and varyγ from 200Mb/s to 2Gb/s
(see Table 2). Overall, with independent node failures only, hierarchical block placement achieves
higher MTTDL than flat block placement (by around 33%) due to the minimized cross-rack repair
traffic in repairing a single node failure. However, when correlated node failures are included, the
MTTDL drop in hierarchical block placement is much more obvious than in flat block placement.

Specifically, in the presence of correlated node failures, hierarchical block placement has a
relatively higher MTTDL than flat block placement when independent node failures are more
frequent, in which case the repair rate plays a more dominant role in MTTDL. For example, in
Table 1, when 1/λ1 = 2 years and there are correlated node failures, the MTTDL of flat block
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Table 2. MTTDLs of Flat Block Placement and Hierarchical Block Placement for Different

Values of γ (Gb/s) and 1/λ1 = 4 Years

γ (Gb/s) 0.2 0.5 1 2
Flat, without correlated 3.32E+05 5.12E+06 4.08E+07 3.26E+08
Flat, with correlated 3.26E+05 5.02E+06 4.00E+07 3.19E+08
Hierarchical, without correlated 4.42E+05 6.82E+06 5.44E+07 4.34E+08
Hierarchical, with correlated 4.25E+05 6.33E+06 4.69E+07 3.09E+08

placement is 2.54 × 106 years, whereas that of hierarchical block placement is 3.28 × 106 years
(29% higher). However, hierarchical block placement has less MTTDL than flat block placement
when 1/λ1 increases or γ increases (e.g., 1/λ1 ≥ 6 years in Table 1 and γ = 2Gb/s in Table 2). In
this case, the improvement due to the minimized cross-rack repair traffic becomes less important.
Nevertheless, the overall impact of failures is also low and hierarchical block placement already
achieves a fairly high MTTDL (e.g., over 108 years for 1/λ1 ≥ 6 years as shown in Table 1).

4 PRACTICAL DRC CONSTRUCTIONS

It is shown in Hu et al. [24] that DRC can be constructed via random linear codes. A major draw-
back is that such a construction is not practical, as it is nonsystematic (i.e., all blocks are in coded
form). This implies that extra decoding is needed to access any coded block. In this section, we
provide practical DRC constructions that are suitable for real deployment.

4.1 Goals

Our practical DRC constructions aim for several design goals:

(1) Theoretical guarantees: Each construction is MDS (and hence storage optimal) and mini-
mizes the cross-rack repair traffic.

(2) Systematic: The original data blocks are kept after encoding.
(3) Exact-repair: Each reconstructed block has the same content as the original failed block.
(4) Small finite fields: The arithmetic operations of encoding are done over the Galois field

GF(28); in other words, the encoding can be done in units of bytes [20].
(5) Small redundancy: Each construction can achieve storage redundancy below 2×.
(6) Polynomial number of subblocks per block: The number of subblocks per block is polyno-

mial with respect to the number of original data blocks of a stripe (i.e., k); this reduces the
access overhead to subblocks.

(7) Reduced inner-rack repair traffic: The amount of traffic that a relayer receives from all
available nodes within the same rack is no more than that it sends out to the target across
the racks.

(8) Balanced cross-rack repair traffic: Each relayer sends the same amount of cross-rack traffic
during repair.

The design goals have the following implications. Goal 1 ensures that our practical DRC con-
structions preserve the theoretical guarantees as proven in Hu et al. [24]. Goals 2 through 4 im-
prove nonsystematic regenerating codes [15] and DRC [24], both of which require that the Galois
field size needs to be sufficiently large to provide theoretical guarantees. Goal 5 improves existing
systematic regenerating codes including MISER codes [47], Product-Matrix (PM) codes [41], and
PM-RBT codes [38], all of which require the redundancy be at least 2×. Goal 6 improves Butterfly
codes [35], which have 2k−1 subblocks per block (i.e., exponential with k). Goal 7 ensures that by
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limiting the inner-rack repair traffic, the cross-rack repair traffic is the most dominant factor in
the repair performance. Finally, Goal 8 ensures that the repair operation is load balanced across
all racks.

To this end, we propose two families of practical DRC constructions for different possible config-
urations of (n,k, r ). Both families can tolerate a variable number of node failures, although tolerat-
ing only a single-rack failure to trade for the minimum cross-rack repair traffic. Family 1, referred
to as DRC(n,k, n

n−k
), supports general n and k (k < n) with r = n

n−k
, provided that r is an integer.

It can be configured with low storage redundancy (e.g., 1.33× for (8, 6, 4)). Family 2, referred to
as DRC(3z, 2z − 1, 3), supports any integer z ≥ 2. Its redundancy is 1.5 to 2×, which is generally
higher than that of Family 1 but achieves less cross-rack repair traffic. Our current DoubleR pro-
totype has implemented DRC(6,4,3), DRC(8,6,4), and DRC(9,6,3) for Family 1, and DRC(6,3,3) and
DRC(9,5,3) for Family 2.

One key property of both families is that their encoding/decoding operations are based on the
classical RS codes [42], which have been well studied and widely deployed in production [2, 16, 33,
34]. Thus, we can exploit the theoretical guarantees provided by RS codes (e.g., the MDS property).
A key challenge is how to augment RS codes to satisfy the design goals listed in Section 4.1, which
we address in the following.

Before we present the two families of DRC constructions, we remark that several recent studies
[19, 43, 57, 58] have proposed MSR code constructions that support generaln andk and also achieve
Goals 1 through 6 stated earlier. Recall that Family 1 has the same parameters in Theorem 3.1. Thus,
we can directly use the recently proposed MSR code constructions to minimize the cross-rack
repair traffic. Nevertheless, such MSR code constructions are mainly studied from a theoretical
standpoint, and their implementations and evaluations are still open issues. In contrast, Family 1
can be realized by RS codes, which are well known in practice.

4.2 Family 1: DRC(n,k, n
n−k

)

Family 1 integrates RS codes with interference alignment [47], which makes the reduction of inner-
rack repair traffic (Goal 7) and the balance of cross-rack repair traffic across multiple racks (Goal 8)
possible. We use DRC(9,6,3) as an example, as shown in Figure 5(a).

Construction. For each stripe, we collect a set of k data blocks and divide each block into n − k
subblocks, called data subblocks. We group the subblocks at the same offset of all data blocks into
a set, so there are n − k sets in total. We construct n − k parity blocks from the k data blocks by
encoding each set of k data subblocks into n − k coded subblocks, called parity subblocks, using RS
encoding.

For example, consider DRC(9,6,3) in Figure 5(a). We have nine nodes, denoted by N1, N2 , . . . ,
N9, that are placed across three racks, denoted by R1, R2, and R3. We divide k = 6 data blocks into
three sets of subblocks {a1, . . . ,a6}, {b1, . . . ,b6}, and {c1, . . . , c6}, which are stored in the first six
nodes, N1 to N6. We perform RS encoding to encode each of the three sets of data subblocks and
respectively form three sets of parity subblocks, denoted by {p1,p2,p3}, {p4,p5,p6}, and {p7,p8,p9}.
The parity blocks are stored in the remaining three nodes, N7 to N9. Since the original k data blocks
can be reconstructed from any k blocks of a stripe via RS decoding, the MDS property is preserved.

Repair idea. We first describe the main idea of repairing a data block and discuss how it also
applies to repairing a parity block.

Without loss of generality, we repair a data block in N1. Each relayer (say, N4 and N7) sends the
target, denoted by N 1, three encoded subblocks of size B/3 each. Based on DoubleR, the target N 1
can obtain data from N2 and N3 of the local rack and relayers N4 and N7 of the nonlocal racks to
repair the lost subblocks {a1,b1, c1}. Obviously, N2, N3, and N4 cannot provide any information
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Fig. 5. Two families of DRC. The red (solid) arrows refer to the network transfers of encoded subblocks.

pertaining to {a1,b1, c1}, whereas only N7 can provide three encoded subblocks, denoted by
{e1, e2, e3}, in the form of linear combinations of all data subblocks. Thus, N 1 must be able to solve
for {a1,b1, c1} from {e1, e2, e3} by subtracting out the “interference” information pertaining to the
nonfailed data subblocks. We borrow the idea of interference alignment [47] to make the interfer-
ence information formed by a number of aligned linear combinations, which are either the same
or scalar multiples of each other. Instead of solving for individual subblocks, the repair operation
now cancels out aligned linear combinations through linear algebra.

To repair a parity block (e.g., in N7), we represent its parity subblocks p1, p4, p7 by a′1, b ′1, and
c ′1, respectively. Due to RS encoding, the data subblocks a1, b1, and c1 are in fact the linear com-
binations of {a′1,a2, . . . ,a6}, {b ′1,b2, . . . ,b6}, and {c ′1, c2, . . . , c6}, respectively. Thus, we can view
{a′1,b ′1, c ′1} as data subblocks and {a1,b1, c1} as parity subblocks. In this way, we can apply the same
approach of repairing a data block into repairing a parity block.

Repair details. We specify the detailed steps of repairing N1, whereas the same methodology
applies to other nodes:

(1) The relayer N7 sends encoded subblocks {e1, e2, e3} to the target N 1 such that each encoded
subblock comprises the same aligned linear combination of {a5,b5, c5,a6,b6, c6}. We elaborate how
to form {e1, e2, e3} in the following.

(1.1) e1 is simply given by p1 + p4 + p7, which can be viewed as a linear combination of all data
subblocks. Let e1 =

∑6
i=1〈ai ,bi , ci 〉1, where 〈x1, . . . ,xm〉j denotes the jth linear combination of sub-

blocks {x1, . . . ,xm }.
(1.2) e2 is a linear combination of {p1,p4,p7, 〈p2,p5,p8〉}, where 〈p2,p5,p8〉 is a linear combination

sent from N8 to N7. We ensure that e2 also contains
∑6

i=5〈ai ,bi , ci 〉1, which aligns with part of e1,

and is represented as e2 =
∑4

i=1〈ai ,bi , ci 〉2 +
∑6

i=5〈ai ,bi , ci 〉1. This can be accomplished by tuning
the coding coefficients as follows. Let e2 = γ1p1 + γ2p4 + γ3p7 + (γ4p2 + γ5p5 + γ6p8), where γi ’s are
some coding coefficients. Then we can tune γ1 and γ4 in such a way that γ1p1 + γ4p2 have the same
terms for a5 and a6 as in

∑6
i=5〈ai ,bi , ci 〉1. Similarly, we can tune γ2 and γ5 to have the same terms

for b5 and b6, and tune γ3 and γ6 to have the same terms for c5 and c7.
(1.3) e3 is a linear combination of {p1,p4,p7, 〈p3,p6,p9〉}, where 〈p3,p6,p9〉 is a linear combination

sent from N9 to N7. We also ensure that e3 also contains
∑6

i=5〈ai ,bi , ci 〉1, which again aligns with
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part of e1, by setting e3 =
∑4

i=1〈ai ,bi , ci 〉3 +
∑6

i=5〈ai ,bi , ci 〉1. This can be done by tuning coding
coefficients as earlier.

(2) The relayer N4 computes 〈a4,b4, c4〉1 and retrieves the linear combinations 〈a5,b5, c5〉1 and
〈a6,b6, c6〉1 from N5 and N6, respectively. It sends N 1 three encoded subblocks, each of which aligns

with part of e1, e2, or e3. For example, the linear combination
∑6

i=4〈ai ,bi , ci 〉1 aligns with part of
e1.

(3) Each of the nodes N2 and N3 in the local rack sends N 1 three encoded subblocks, each of
which aligns with part of e1, e2, or e3.

(4) N 1 cancels out the aligned linear combinations. It now has 〈a1,b1, c1〉1, 〈a1,b1, c1〉2, and
〈a1,b1, c1〉3, which can be used to solve for {a1,b1, c1}.

4.3 Family 2: DRC(3z, 2z−1, 3)

Family 2 differs from Family 1 by allowing a node in a nonlocal rack to merely read a subblock
from its local storage and send it to the relayer, without performing encoding operations. It follows
the spirit of repair by transfer [46] and helps reduce disk I/Os. We use DRC(9,5,3) as an example,
as shown in Figure 5(b).

Construction. For each stripe, we collect k data blocks and divide each block into two subblocks
(i.e., 2(2z − 1) data subblocks in total). We group the subblocks at the same offset of all data blocks
into a set (i.e., there are two sets in total). Each set of 2z − 1 data subblocks is independently
encoded using RS codes to generate z + 1 parity subblocks. We distribute the n = 3z blocks across
three racks, each of which contains z blocks (i.e., 3z subblocks in total). Like Family 1, since each
set of subblocks is encoded with RS codes, the MDS property is preserved.

For example, consider DRC(9,5,3) in Figure 5(b) (i.e., z = 3). We have nine nodes N1,N2, . . . ,N9

that are placed across three racks R1, R2, and R3. The data blocks have two sets of data subblocks
{a1, . . . ,a5} and {b1, . . . ,b5}, and we place the data blocks in N1 to N5. We encode them using RS
codes to generate two sets of parity subblocks {p1,p2,p3,p4} and {p5,p6,p7,p8}, respectively, and
place the parity blocks in N6 to N9.

Repair idea. As in Family 1, we only need to consider how to repair a data block (e.g., in N1),
whereas we apply the same methodology to repair a parity block. Our observation is that each
failed subblock can be reconstructed by 2z − 1 subblocks from two racks only—that is, the z − 1
subblocks of the same set in the local rack and the z subblocks of the same set in one of the
nonlocal racks. For example, in Figure 5(b), the failed subblock a1 can be reconstructed from
{a2,a3,a4,a5,p1}, which reside in R1 and R2, while the failed subblock b1 can be reconstructed
from {b2,b3,p6,p7,p8}, which reside in R1 and R3. The two relayers (say, N4 and N7) only need
to send information that is needed for reconstructing a1 and b1, respectively, and the cross-rack
repair traffic can be shown to be minimum. In addition, note that each of N4, . . .N9 only needs to
read a subblock from its local storage, where the subblock size is only half of the block size. This
reduces disk I/Os.

Repair details. We specify the detailed steps of repairing the data block in N1:
(1) The relayer N4 in R2 collects the subblocks a4, a5, and p1 within the same rack. It computes a

linear combination of the collected subblocks as an encoded subblock such that both a4 and a5 can
be canceled out; in other words, it computes the encoded subblock as 〈a4,a5,p1〉 = 〈a1,a2,a3〉. This
can be accomplished by simply subtracting out a4 and a5 from p1, as p1 is a linear combination of
{a1,a2, . . . ,a5}. It sends the encoded subblock to the target N 1.

(2) The relayer N7 in R3 collects the subblocks p6, p7, and p8 within the same rack. Similar to
earlier, N7 computes a linear combination of p6, p7, and p8 as an encoded subblock such that both
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b4 and b5 can be canceled out. Thus, the encoded subblock is computed as 〈p6,p7,p8〉 = 〈b1,b2,b3〉
and sent to the target N 1.

(3) Both nodes N2 and N3 send their stored subblocks to the target N 1.
(4) N 1 solves for a1 and b1 by canceling out a2, b2, a3, and b3 from 〈a1,a2,a3〉 and 〈b1,b2,b3〉

through linear algebra.

5 IMPLEMENTATION

We implement DoubleR on Facebook’s HDFS [1], which integrates HDFS-RAID [2] to support
erasure coding atop HDFS [49]. We provide an overview of how HDFS realizes erasure coding and
then describe how we implement DoubleR atop HDFS.

5.1 HDFS Overview

HDFS organizes data as fixed-size data blocks, each of which is a basic unit of read/write opera-
tions and has a large size (e.g., 64MiB) to mitigate random access overhead. It comprises a single
NameNode for managing file operations and multiple DataNodes for storing data.

HDFS-RAID adds a RaidNode to HDFS for managing erasure-coded blocks. The RaidNode first
stores data blocks with replication such that each data block has multiple copies stored in distinct
nodes. It later transforms the blocks into erasure-coded blocks in the background. The RaidNode
coordinates the transformation via MapReduce [14]. Specifically, to construct an erasure code with
parameters n and k for a stripe, a map task of a MapReduce job collects k data blocks from different
DataNodes, encodes them into n − k parity blocks, and distributes the n blocks across n different
DataNodes. In addition, the RaidNode periodically checks for any failed blocks and triggers the
repair operation if needed.

5.2 DoubleR Details

We explain how we extend the Facebook’s HDFS to include DoubleR and provide justifications for
our design choices.

Erasure codes. We implemented different erasure codes based on the parameters shown in Sec-
tion 3.3., including RS codes, MSR codes, and DRC. For MSR codes, we implemented Butterfly
codes [35] for n − k = 2 and MISER codes [47] for n = 2k ; both codes are systematic codes. For
DRC, we implemented the two families of practical DRC constructions for different combinations
of (n,k, r ) (see Section 3).

Each erasure code is implemented in C++ using Intel’s ISA-L [3]. We mainly use two ISA-L APIs:
ec_init_tables, which specifies the coding coefficients, and ec_encode_data, which specifies
the encoding/decoding operations. Both APIs automatically optimize the computations based on
the hardware configurations (e.g., Intel SSE instructions are used if supported). We link each era-
sure code implementation with Hadoop via Java Native Interface (JNI).

Strip size. In the original HDFS-RAID, a block is partitioned into multiple strips for erasure coding
such that the strips at the same block offsets are encoded together to form a smaller-size stripe.
Our DoubleR implementation exploits this feature and further uses multithreading (see details
in the following) to parallelize the encoding/decoding of blocks that now span multiple smaller-
size stripes. For both regenerating codes and DRC, each strip is divided into substrips so that the
available nodes can send encoded substrips for repair; in other words, an encoded subblock in
regenerating codes and DRC is composed of multiple encoded substrips of a block. Note that if the
strip size is too small, there will be heavy I/O access overhead. We study the impact of the strip
size through experiments (see Section 6).
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Block placement. DoubleR groups multiple blocks belonging to the same stripe in the same rack.
We modify the RaidNode to specify how blocks of each stripe are stored based on the parameters
(n,k, r ).

Repair operations. DoubleR focuses on repairing single failures. It currently supports two types
of repair operations: node recovery and degraded reads. A node recovery operation repairs multiple
failed blocks of a single failed node, in which each failed block belongs to a different stripe. We
modify the RaidNode to call DoubleR for node recovery when it detects a failed node. However, a
degraded read operation repairs a single unavailable block. We modify the file system client to call
DoubleR to perform a degraded read when it fails to access a block and triggers a block missing
exception.

Parallelization. DoubleR does not leverage MapReduce for repair as in the original HDFS-RAID;
instead, its implementation embodies extensive parallelization to speed up a repair operation and
move the bottleneck to cross-rack transfer. First, we use multithreading at the node level to par-
allelize disk I/O, encoding/decoding, and network transfer operations. We also spawn multiple
threads to repair multiple strips of a failed block in parallel. In addition, for node recovery, which
involves the repair of multiple failed blocks of a single node, we assign different relayers and tar-
gets for different stripes to harness parallelism in a data center.

Exported APIs. DoubleR exports three primitive APIs for a repair operation: (1) NodeEncode,
in which a storage node computes encoded subblocks from its locally stored block; (2)
RelayerEncode, in which a relayer computes re-encoded subblocks from the encoded subblocks
of the storage nodes in the same rack; and (3) Decode, in which a target reconstructs a failed block,
using the blocks from the nodes in the same rack and blocks from the relayers in different racks.
For regenerating codes [15] and their variants [35, 47], we only need to implement NodeEncode
and Decode; for DRC, we implement all three APIs.

6 EXPERIMENTS

We present evaluation results on DoubleR from testbed experiments. We address the following
questions. Can DRC achieve the theoretical performance (i.e., the numerical results in Section 3.3)
in a real networked environment? Does minimizing cross-rack repair traffic play a key role in
improving the overall repair performance?

6.1 Methodology

Testbed setup. Our testbed experiments are conducted on a cluster of 11 machines. Each machine
has a quad-core 3.4-GHz Intel Core i5-3470, 16GiB RAM, and a Seagate ST1000DM003 7200 RPM
1-TiB SATA hard disk. All machines are interconnected via a 10-Gb/s Ethernet switch. We deploy
Facebook’s HDFS [1] on 10 machines. One machine runs both the NameNode and RaidNode, and
each of the other n machines runs a DataNode for an (n,k, r ) code, where n is up to 9 in our
evaluation.

To mimic a hierarchical data center, we assign one dedicated machine called the gateway to
mimic the network core in Figure 1. Specifically, we partition the n DataNodes into r logical racks.
If one machine in a logical rack wants to send data to another machine in a different logical rack,
its cross-rack traffic will first be redirected to the gateway, which then relays the traffic to the des-
tination machine; otherwise, its inner-rack traffic will be sent directly to the destination machine
through the 10Gb/s Ethernet. We configure the routing table of each machine using the Linux
command route for the traffic redirection. In addition, we limit the outgoing bandwidth of the
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gateway (i.e., the available cross-rack bandwidth) using the Linux traffic control command tc to
mimic the oversubscription scenario (see Section 1).

Default parameters. We study different erasure codes that we implemented (see Section 5.2). By
default, we configure the block size as 64MiB (which is also the default in Facebook’s HDFS) and
the strip size as 256KiB. One subtlety is that both MISER(6,3,3) and DRC(9,6,3) need to partition a
block (strip) into three subblocks (substrips) for repair. To allow even partitioning, for both cases,
we configure the block size as 63MiB and the strip size as 252KiB as their defaults. We also set
the default gateway bandwidth as 1Gb/s to simulate the available cross-rack bandwidth for repair
in production data centers [44]. We vary one of the parameters in each of our experiments. Our
results are averaged over five runs; we omit the variances of the results, as they are insignificant
based on our evaluation.

6.2 Microbenchmarks

Before we measure the node recovery and degraded read performance, we first show via mi-
crobenchmark evaluation that cross-rack transfer is indeed the most dominant factor in the overall
repair performance. We study DRC(9,6,3) and DRC(9,5,3) as the representatives for Family 1 and
Family 2, respectively, using the default parameters. We provide a breakdown of the repair time
for a single failed block; note that the default block sizes for DRC(9,6,3) and DRC(9,5,3) are 63MiB
and 64MiB, respectively. We decompose a repair operation into different steps, including sending
data over the network and performing local computations in different APIs (see Section 5.2). We
derive the expected running time of each step as follows:

—Disk read: For both DRC(9,6,3) and DRC(9,5,3), each available node first reads a block from
its local disk. Our measurement indicates that the disk read throughput of our testbed is
around 177MiB/s. Thus, the disk read times for a single block for DRC(9,6,3) and DRC(9,5,3)
are 0.354s and 0.361s, respectively.

—Node encode: Each available node executes NodeEncode to compute an encoded subblock.
Our measurement finds that the times spent on NodeEncode for DRC(9,6,3) and DRC(9,5,3)
are 0.067s and 0.068s, which are very similar. Our investigation finds that DRC(9,6,3) only
needs to perform simple node-level encoding, whereas DRC(9,5,3) does not even need to
perform node-level encoding. Thus, the overhead is mainly due to the JNI calls rather than
the encoding computations.

— Inner-rack transfer: We study the inner-rack transfer performance at the relayer in each non-
local rack. Our measurement using iperf indicates that the effective inner-rack bandwidth
of the 10Gb/s link is around 9.41Gb/s ≈ 1,090MiB/s. For DRC(9,6,3), the relayer receives an
amount of 2

3 × 63 = 42MiB of inner-rack traffic, so the inner-rack transfer time is 0.039s. For
DRC(9,5,3), the relayer receives an amount of 64MiB of inner-rack traffic, so the inner-rack
transfer time is 0.059s.

—Relayer encode: Each relayer executes RelayerEncode to re-encode the received encoded
subblocks. Our measurement finds that the times spent on RelayerEncode for DRC(9,6,3)
and DRC(9,5,3) are 0.191s and 0.145s, respectively. Although the relayer processes more
input data in DRC(9,5,3) than in DRC(9,6,3), it performs simpler linear combinations (see
Figure 5) and hence spends less time in RelayerEncode.

—Cross-rack transfer: We study the cross-rack transfer performance from the target’s per-
spective. Our measurement using iperf indicates that when we set the gateway band-
width (i.e., the simulated cross-rack bandwidth) to 1Gb/s, the effective bandwidth is around
953Mb/s ≈ 114MiB/s. For DRC(9,6,3), the amount of cross-rack traffic is 2 × 63 = 126MiB,
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Table 3. Time Breakdown of Repairing a Single Failed

Block (in Seconds)

DRC(9,6,3) DRC(9,5,3)

Disk read 0.354 0.361
Node encode 0.067 0.068
Inner-rack transfer 0.039 0.059
Relayer encode 0.191 0.145
Cross-rack transfer 1.105 0.561
Decode 0.443 0.32

so the cross-rack transfer time is 1.105s. For DRC(9,5,3), the amount of cross-rack traffic is
64MiB, so the cross-rack transfer time is 0.561s.

—Decode: The target executes Decode to obtain the reconstructed block. Our measurement
indicates that the times spent on Decode for DRC(9,6,3) and DRC(9,5,3) are 0.443s and 0.32s,
respectively.

Table 3 summarizes the breakdown results. Our study shows that the cross-rack transfer time
is the most dominant factor in the repair operation. If we pipeline all of the steps and run them
in parallel, we expect that the repair performance is bottlenecked by the cross-rack transfer. Note
that the decode time is high in both codes. Nevertheless, the actual decoding overhead can be
mitigated in node recovery, as we can parallelize the decoding of multiple stripes across different
targets. However, the disk read is another dominant factor in the repair performance, especially
when the available cross-rack bandwidth increases. Our later experiments will further validate our
microbenchmark evaluation.

6.3 Node Recovery

We first evaluate the node recovery performance of DoubleR when it repairs multiple failed blocks
of a single failed node. Specifically, we write 20 stripes of blocks across DataNodes. To mimic a
node failure, we pick one DataNode at random, erase all of its 20 blocks, and run DoubleR to repair
all erased blocks. We use the default parameters (see Section 6.1) and vary the gateway bandwidth
from 200Mb/s to 2Gb/s. For each erasure code, we measure the recovery throughput, defined as
the total size of failed blocks being repaired divided by the total time of the entire node recovery
operation.

Figure 6 shows the results for different erasure codes. When the gateway bandwidth ranges
from 200Mb/s to 1Gb/s, the measured recovery throughput results are fairly consistent with the
numerical results in Figure 3 in Section 3.3, as the repair performance is now bottlenecked by
the available gateway bandwidth. For example, we compare RS(9,5,3) and DRC(9,5,3). From the
numerical results (see Figure 3), the cross-rack repair traffic of RS(9,5,3) is three blocks for repairing
a single failed block, whereas that of DRC(9,5,3) is one block only. From the measured results, the
recovery throughput of DRC(9,5,3) is 2.96×, 2.92×, and 2.81× that of RS(9,5,3) when the gateway
bandwidth is 200Mb/s, 500Mb/s, and 1Gb/s, respectively (see Figure 6(c), (f), and (i), respectively).
Overall, when the available gateway bandwidth is smaller, the recovery throughput gain is closer
to the theoretical gain.

However, when the gateway bandwidth is 2Gb/s, the disk read also becomes a dominant factor in
the repair performance (see Section 6.2), so the gain of DRC diminishes. For example, the recovery
throughput gain of DRC(9,5,3) over RS(9,5,3) drops to 2.04× (see Figure 6(l)). In another example,
DRC(6,3,3) has 10% lower recovery throughput than MISER(6,3,3) when the gateway bandwidth
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Fig. 6. Node recovery performance of different erasure codes under different gateway bandwidth settings.

Note that Butterfly codes and DRC have very close performance when r = n/2 and n − k = 2 (see Theo-

rem 3.1).

is 2Gb/s (see Figure 6(k)), although it has higher throughput than MISER(6,3,3) when the gateway
bandwidth is no more than 1Gb/s. Thus, we can claim the benefits of DRC only if cross-rack transfer
is the performance bottleneck in a data center.

6.4 Degraded Reads

We next evaluate the degraded read performance when the file system client accesses a single
unavailable block. Specifically, we randomly choose a data block to erase and let the file system
client access the erased block through a degraded read. As in Section 6.3, we again use the default
parameters and vary the gateway bandwidth from 200Mb/s to 2Gb/s. We measure the degraded
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Fig. 7. Degraded read performance of different erasure codes under different gateway bandwidth settings.

read time, defined as the latency from issuing a read request until the failed block is completely
reconstructed at the file system client.

Figure 7 shows the results for different erasure codes. We see that DRC also shows perfor-
mance gain in degraded reads by minimizing the cross-rack repair traffic. For example, we com-
pare RS(9,5,3) and DRC(9,5,3). The degraded read time of DRC(9,5,3) is 66.9%, 62.3%, 58.0%, and
55.4% less than that of RS(9,5,3) when the gateway bandwidth is set to 200Mb/s, 500Mb/s, 1Gb/s,
and 2Gb/s, respectively.

6.5 Impact of Strip Size and Block Size

We finally evaluate the repair performance of DoubleR for various strip sizes and block sizes. Here,
we focus on node recovery as in Section 6.3 and compare DRC(6,4,3), DRC(6,3,3), DRC(8,6,4), and
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Fig. 8. Impact of strip size and block size on node recovery performance.

DRC(9,5,3). Note that we do not consider DRC(9,6,3), as its strip size and block size are different
from others (see Section 6.1). We set the gateway bandwidth as 1Gb/s.

Figure 8(a) first shows the recovery throughput when the strip size varies from 1KiB to 16MiB,
where the block size is fixed at 64MiB. We see that there is a performance drop when the strip
size is too small or too large. Specifically, when the strip size is less than 8KiB, DoubleR needs
to issue more function calls to access more strips of a block, and the overhead becomes more
significant. When the strip size is larger than 2MiB, the parallelism across multiple strips of a
block cannot be fully utilized. The recovery throughput is the maximum when the strip size is in
between.

Figure 8(b) shows the recovery throughput when the block size varies from 1MiB to 256MiB,
where the strip size is fixed at 256KiB. The recovery throughput is small when the block size is
small, as the block access overhead is significant. The recovery throughput increases with the
block size and reaches the maximum when the block size is at least 64MiB.

7 RELATED WORK

We review related work on erasure coding in the context of improving repair performance.

Erasure code constructions. Many constructions of erasure codes have been proposed to reduce
the repair traffic. Regenerating codes [15] are a special family of erasure codes that minimize the
repair traffic and provably achieve the optimal trade-off between storage redundancy and repair
traffic. Constructions of regenerating codes have been proposed, such as interference alignment
codes [47, 51, 55], product-matrix codes [41], zigzag codes [52], FMSR codes [9, 23], PM-RBT codes
[38], and butterfly codes [35]. As stated in Section 4.1, recent studies [19, 43, 57, 58] also propose
MSR code constructions for general parameters.

Some erasure codes aim to minimize I/O (i.e., the amount of data read from storage) during
repair. For example, rotated RS codes [28] and Hitchhiker [40] propose new parity constructions
that send fewer blocks in a single-node failure repair.

Some erasure codes trade storage efficiency for repair performance. Simple regenerating codes
(SRC) [36] retrieve data from a small number of nonfailed nodes to repair a failed node, thereby
limiting the I/O overhead of accessing nonfailed nodes during repair. Locally repairable codes trade
storage efficiency for repair performance by associating local parity blocks with different subsets
of nodes. Thus, they can retrieve data from a smaller number of nodes during repair and limit both
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repair traffic and I/O. Two representative constructions are Azure’s LRC [25] and Facebook’s LRC
[44].

The preceding erasure codes mainly adopt flat block placement in hierarchical data centers to
tolerate rack failures (as mentioned in Ford et al. [16], Huang et al. [25], Muralidhar et al. [33],
Rashmi et al. [40], and Sathiamoorthy et al. [44]). Our work complements the preceding studies
by specifically minimizing the critical cross-rack repair traffic via hierarchical block placement.

Erasure coding in hierarchical data centers. Erasure-coded repair in hierarchical data centers has
been studied, although in a limited context. Some studies focus on a data center with two racks [17,
37] or propose locally repairable codes for multiple racks [53]. R-STAIR codes [29] place an extra
parity block in each rack to allow rack-local repair without cross-rack traffic. However, R-STAIR
codes require sophisticated configurations of parameters of full-rack and partial-rack fault toler-
ance. CAR [48] is specifically designed for RS codes and exploits intra-rack encoding to reduce the
cross-rack repair traffic. However, CAR does not provide any theoretical guarantee of minimizing
the cross-rack repair traffic as in DRC [24]. We extend the DRC framework [24] from the applied
side: we provide practical DRC constructions and evaluate their prototype implementation.

Efficient repair approaches. Some studies propose efficient repair approaches for existing erasure
codes. For example, lazy repair [7, 50] triggers repair only when the number of failures reaches a
threshold to avoid repairing temporary failures. CORE [31] extends existing regenerating codes to
support the optimal recovery of multinode failures and presents a prototype implementation on
HDFS. HACFS [56] dynamically switches encoded blocks between two erasure codes to balance
storage overhead and repair performance. PPR [32] divides a repair into partial operations executed
by multiple servers in parallel to reduce the overall repair time. Repair pipelining [30] further
reduces the repair time to almost the same as the normal read time by slicing the repair along a
linear chain. Our work differs from them by proposing new regenerating code constructions for
hierarchical data centers.

8 DISCUSSION

The repair gains of DRC build on several design assumptions. In this section, we discuss the design
trade-offs of DRC.

Reduced rack-level fault tolerance. DRC builds on hierarchical block placement to trade reduced
rack-level fault tolerance for the minimum cross-rack repair traffic. The underlying assumption is
that rack failures or correlated node failures are rare, so minimizing the cross-rack repair traffic
can improve the repair performance and hence the overall storage reliability (see Section 3.4).
Otherwise, erasure codes that build on flat block placement should be used.

Limited cross-rack bandwidth. DRC assumes that the repair performance is bottlenecked by the
constrained cross-rack bandwidth. If the cross-rack bandwidth is sufficient, then other types of
overhead may become prohibitive. For example, Family 1 of DRC needs to read n − 1 blocks from
disk to achieve the minimum cross-rack repair traffic (same for MSR codes), whereas RS codes
only need to read k blocks. In addition, although DRC minimizes the cross-rack repair traffic, its
total number of blocks being transferred, including both cross rack and inner rack, is more than
that of MSR codes in general (e.g., see Figure 2). Thus, the repair gain of DRC may no longer hold
when the cross-rack bandwidth is sufficient, as shown in Section 6.3 for the case of 2Gb/s gateway
bandwidth.

Limited parameters. Our current DRC constructions are designed for specific sets of parameters.
An open question is whether there exist explicit DRC constructions for general sets of parameters.
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Storage optimality. In this article, we only focus on erasure codes that are MDS, including RS
codes, MSR codes, and DRC. However, if we relax the storage optimality assumption, we can fur-
ther reduce or even eliminate the cross-rack repair traffic. For example, locally repairable codes
[25, 44] can be deployed via hierarchical block placement by placing each local parity stripe in the
same rack to eliminate the cross-rack repair traffic in a single-node repair. The trade-off of locally
repairable codes is that they are non-MDS and incur higher storage redundancy than MDS codes.

9 CONCLUSIONS

We present DoubleR, a framework that realizes repair layering to improve repair performance in
hierarchical data centers. DoubleR builds on the recent theoretical findings of DRC and aims to
minimize the cross-rack repair traffic. We design and implement two families of practical DRC
constructions for DoubleR. Experiments on our DoubleR prototype show the effectiveness of DRC
in terms of node recovery throughput and degraded read time over state-of-the-art regenerating
codes. The source code of our DoubleR prototype is available for download at http://adslab.cse.
cuhk.edu.hk/software/doubler.
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